You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Ten years after a 1989 meeting of number theorists and physicists at the Centre de Physique des Houches, a second event focused on the broader interface of number theory, geometry, and physics. This book is the first of two volumes resulting from that meeting. Broken into three parts, it covers Conformal Field Theories, Discrete Groups, and Renormalization, offering extended versions of the lecture courses and shorter texts on special topics.
This volume covers many topics, including number theory, Boolean functions, combinatorial geometry, and algorithms over finite fields. It contains many new, theoretical and applicable results, as well as surveys that were presented by the top specialists in these areas. New results include an answer to one of Serre's questions, posted in a letter to Top; cryptographic applications of the discrete logarithm problem related to elliptic curves and hyperelliptic curves; construction of function field towers; construction of new classes of Boolean cryptographic functions; and algorithmic applications of algebraic geometry.
This volume contains the proceedings of a seminar on Algebraic $K$-theory and Algebraic Number Theory, held at the East-West Center in Honolulu in January 1987. The seminar, which hosted nearly 40 experts from the U.S. and Japan, was motivated by the wide range of connections between the two topics, as exemplified in the work of Merkurjev, Suslin, Beilinson, Bloch, Ramakrishnan, Kato, Saito, Lichtenbaum, Thomason, and Ihara. As is evident from the diversity of topics represented in these proceedings, the seminar provided an opportunity for mathematicians from both areas to initiate further interactions between these two areas.
Invited articles by leading researchers explore various aspects of the parallel worlds of function fields and number fields Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives Aimed at graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections
The Stacks Project Expository Collection (SPEC) compiles expository articles in advanced algebraic geometry, intended to bring graduate students and researchers up to speed on recent developments in the geometry of algebraic spaces and algebraic stacks. The articles in the text make explicit in modern language many results, proofs, and examples that were previously only implicit, incomplete, or expressed in classical terms in the literature. Where applicable this is done by explicitly referring to the Stacks project for preliminary results. Topics include the construction and properties of important moduli problems in algebraic geometry (such as the Deligne–Mumford compactification of the moduli of curves, the Picard functor, or moduli of semistable vector bundles and sheaves), and arithmetic questions for fields and algebraic spaces.
This volume, the 7th in the Transactions on Computational Systems Biology series, contains a fully refereed and carefully selected set of papers from two workshops: BioConcur 2004 held in London, UK in August 2004 and BioConcur 2005 held in San Francisco, CA, USA in August 2005. The 8 papers chosen for this special issue are devoted to various aspects of computational methods, algorithms, and techniques in bioinformatics.
This volume contains the proceedings of the Stanford Symposium on Algebraic Topology: Applications and New Directions, held from July 23-27, 2012, at Stanford University, Stanford, California. The symposium was held in honor of Gunnar Carlsson, Ralph Cohen and Ib Madsen, who celebrated their 60th and 70th birthdays that year. It showcased current research in Algebraic Topology reflecting the celebrants' broad interests and profound influence on the subject. The topics varied broadly from stable equivariant homotopy theory to persistent homology and application in data analysis, covering topological aspects of quantum physics such as string topology and geometric quantization, examining homology stability in algebraic and geometric contexts, including algebraic -theory and the theory of operads.
Proceedings of a Conference held at the University of Western Ontario in 1981. More than one hundred papers were presented by researchers from a wide spectrum of countries and institutions.
The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6–10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions.