You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Visualizing the data is an essential part of any data analysis. Modern computing developments have led to big improvements in graphic capabilities and there are many new possibilities for data displays. This book gives an overview of modern data visualization methods, both in theory and practice. It details modern graphical tools such as mosaic plots, parallel coordinate plots, and linked views. Coverage also examines graphical methodology for particular areas of statistics, for example Bayesian analysis, genomic data and cluster analysis, as well software for graphics.
This book gives an overview of modern data visualization methods, both in theory and practice. It details modern graphical tools, graphical methodology for particular areas of statistics, as well software for graphics.
Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences.
Learn How to Design Effective Visualization SystemsVisualization Analysis and Design provides a systematic, comprehensive framework for thinking about visualization in terms of principles and design choices. The book features a unified approach encompassing information visualization techniques for abstract data, scientific visualization techniques
Process measurement deals with the quantification of business process models using process model metrics. This book presents a theoretical framework for the prediction of external process model attributes (as, for example, error-proneness and understandabiltiy) based on internal (structural) attributes. The properties of proposed metrics are analyzed. A visualization technique for metric values is introduced and metrics for process model understandability and granularity are evaluated.
Humans have used technology to expand our limited vision for millennia, from the invention of the stone mirror 8,000 years ago to the latest developments in facial recognition and augmented reality. We imagine that technologies will allow us to see more, to see differently and even to see everything. But each of these new ways of seeing carries its own blind spots. In this illuminating book, Jill Walker Rettberg examines the long history of machine vision. Providing an overview of the historical and contemporary uses of machine vision, she unpacks how technologies such as smart surveillance cameras and TikTok filters are changing the way we see the world and one another. By analysing fiction...
This is the first comprehensive guide to the archaeological uses of network science.
Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences.
Art, or Science? Which of these is the right way to think of the field of visualization? This is not an easy question to answer, even for those who have many years experience in making graphical depictions of data with a view to help people understand it and take action. In this book, Graham Wills bridges the gap between the art and the science of visually representing data. He does not simply give rules and advice, but bases these on general principles and provide a clear path between them This book is concerned with the graphical representation of time data and is written to cover a range of different users. A visualization expert designing tools for displaying time will find it valuable, but so also should a financier assembling a report in a spreadsheet, or a medical researcher trying to display gene sequences using a commercial statistical package.