You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Meeting the long-felt need for in-depth information on one of the most advanced material characterization methods, a top team of editors and authors from highly prestigious facilities and institutions covers a range of synchrotron techniques that have proven useful for materials research. Following an introduction to synchrotron radiation and its sources, the second part goes on to describe the various techniques that benefit from this especially bright light, including X-ray absorption, diffraction, scattering, imaging, and lithography. The thrid and final part provides an overview of the applications of synchrotron radiation in materials science. bridging the gap between specialists in synchrotron research and material scientists, this is a unique and indispensable resource for academic and industrial researchers alike.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments o...
Biosensors Based on Nanomaterials and Nanodevices links interdisciplinary research from leading experts to provide graduate students, academics, researchers, and industry professionals alike with a comprehensive source for key advancements and future trends in nanostructured biosensor development. It describes the concepts, principles, materials, device fabrications, functions, system integrations, and applications of various types of biosensors based on signal transduction mechanisms, including fluorescence, photonic crystal, surface-enhanced Raman scattering, electrochemistry, electro-luminescence, field-effect transistor, and magnetic effect. The book: Explains how to utilize the unique p...
Cryptography’s essential role in the functioning of the city, viewed against the backdrop of modern digital life. Cryptography is not new to the city; in fact, it is essential to its functioning. For as long as cities have existed, communications have circulated, often in full sight, but with their messages hidden. In Cryptographic City, Richard Coyne explains how cryptography runs deep within the structure of the city. He shows the extent to which cities are built on secrets, their foundations now reinforced by digital encryption and cryptocurrency platforms. He also uses cryptography as a lens through which to inspect smart cities and what they deliver. Coyne sets his investigation into ...
This volume detials diverse methodological approaches on the assembly and applications of DNA origami assemblies. Chapters guide readers through different synthetic and computational methods, isolation and structural characterization of 2D and 3D DNA origami nanoarchitectures, nanophotonics, drug delivery, biophysics, and synthetic biology.Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, DNA and RNA Origami: Methods and Protocols aims to serve as a guideline describing the current state-of-the-art assembly methodologies and applications of DNA origami nanostructures.
This book covers the latest developments in rolling circle amplification (RCA) technology with applications in clinical diagnostic tests and molecular medicine. Topics covered include new enzymes useful in RCA, techniques involving RCA for enhanced signal amplification, novel RCA diagnostics, sensors for expediting RCA detection, and prospective RCA-based therapeutics. This is a valuable book for university professors and students in the field of biomedical engineering and biomolecular pharmacology as well as R&D managers of biotechnology and biopharmaceutical companies. Specifically, this book: Reviews prospective RCA-based therapeutics, including RCA-derived DNA nanoparticles that strongly...
This book constitutes the refereed proceedings of the 24th International Conference on DNA Computing and Molecular Programming, DNA 24, held in Jinan, China, in October 2018. The 12 full papers presented were carefully selected from 14 submissions. Research in DNA computing aims to draw together mathematics, computer science, physics, chemistry, biology, and nanotechnology to address the analysis, design, and synthesis of information-based molecular systems. The papers were sought in all areas related to biomolecular computing, including: algorithms and models for computation on biomolecular systems; computational processes in vitro and in vivo; molecular switches, gates, devices, and circuits; molecular folding and self-assembly of nanostructures; analysis and theoretical models of laboratory techniques; molecular motors and molecular robotics; information storage; studies of fault tolerance and error correction; software tools for analysis, simulation, and design; synthetic biology and in vitro evolution; and applications in engineering, physics, chemistry, biology, and medicine.
There is a high demand for antimicrobials for the treatment of new and emerging microbial diseases. In particular, microbes developing multidrug resistance have created a pressing need to search for a new generation of antimicrobial agents, which are effective, safe and can be used for the cure of multidrug-resistant microbial infections. Nano-antimicrobials offer effective solutions for these challenges; the details of these new technologies are presented here. The book includes chapters by an international team of experts. Chemical, physical, electrochemical, photochemical and mechanical methods of synthesis are covered. Moreover, biological synthesis using microbes, an option that is both eco-friendly and economically viable, is presented. The antimicrobial potential of different nanoparticles is also covered, bioactivity mechanisms are elaborated on, and several applications are reviewed in separate sections. Lastly, the toxicology of nano-antimicrobials is briefly assessed.
This book offers an overview of state-of-the-art in non amplified DNA detection methods and provides chemists, biochemists, biotechnologists and material scientists with an introduction to these methods. In fact all these fields have dedicated resources to the problem of nucleic acid detection, each contributing with their own specific methods and concepts. This book will explain the basic principles of the different non amplified DNA detection methods available, highlighting their respective advantages and limitations. Non-amplified DNA detection can be achieved by adopting different techniques. Such techniques have allowed the commercialization of innovative platforms for DNA detection tha...
DNA Nanotechnology for Cell Research Comprehensive coverage of DNA nanotechnology with a focus on its biomedical applications in disease diagnosis, gene therapy, and drug delivery Bringing together multidisciplinary aspects of chemical, material, and biological engineering, DNA Nanotechnology for Cell Research: From Bioanalysis to Biomedicine presents an overview of DNA nanotechnology with emphasis on a variety of different applications in cell research and engineering, covering a unique collection of DNA nanotechnology for fundamental research and engineering of living cells, mostly in cellulo and in vivo, for the first time. Broad coverage of this book ranges from pioneering concepts of DN...