You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book distills the knowledge gained from research into atoms in molecules over the last 10 years into a unique, handy reference. Throughout, the authors address a wide audience, such that this volume may equally be used as a textbook without compromising its research-oriented character. Clearly structured, the text begins with advances in theory before moving on to theoretical studies of chemical bonding and reactivity. There follow separate sections on solid state and surfaces as well as experimental electron densities, before finishing with applications in biological sciences and drug-design. The result is a must-have for physicochemists, chemists, physicists, spectroscopists and materials scientists.
Electric-field-mediated chemistry is an emerging topic that is rapidly growing and fanning out in many directions. It involves theoretical and experimental aspects, as well as intense interplay between them, including breakthrough achievements such as the proof-of-principle that a Diels–Alder reaction, which involves two simultaneous C–C bond making events, can be catalysed or inhibited simply by changing the direction of an oriented external-electric field (OEEF). This productive interplay between the theoretical and experimental branches of chemistry is continuing, and gradually defining a new sub-field wherein various sources of electric fields, whether external or built-in and design...
Divided into five major parts, the two volumes of this ready reference cover the tailoring of theoretical methods for biochemical computations, as well as the many kinds of biomolecules, reaction and transition state elucidation, conformational flexibility determination, and drug design. Throughout, the chapters gradually build up from introductory level to comprehensive reviews of the latest research, and include all important compound classes, such as DNA, RNA, enzymes, vitamins, and heterocyclic compounds. The result is in-depth and vital knowledge for both readers already working in the field as well as those entering it. Includes contributions by Prof. Ada Yonath (Nobel Prize in Chemistry 2009) and Prof. Jerome Karle (Nobel Prize in Chemistry 1985).
This is the first edited volume that features two important frameworks, Hückel and quantum chemical topological analyses. The contributors, which include an array of academics of international distinction, describe recent applications of such topological methods to various fields and topics that provide the reader with the current state-of-the-art and give a flavour of the wide range of their potentialities.
This book explores the philosophy and the foundations of quantum chemistry. It features chapters written by experts in the field. The contributions analyze quantum chemistry as a discipline, in particular, its relation with both chemistry and physics from the viewpoint of realism and reduction. Coverage includes such topics as quantum chemistry as an “in-between” discipline, molecular structure and quantum mechanics, quantum chemical models, and atoms and molecules in quantum chemistry. The interest of this book is twofold. First, the contributions aim to update and refresh the discussions regarding the foundations of quantum chemistry. Second, they seek to develop new philosophical pers...
Quantum crystallography (QCr) is a novel scientific discipline combining quantum chemistry methods and crystal structure determination. Written by leading experts in the field, this book describes original quantum-mechanical approaches to obtain crystallographic data of enhanced value and explains how they correlate with real diffraction and scattering experiments. In particular, the book covers quantum N-representability, Clinton equations, kernel energy method (KEM), and quantum theory of atoms in molecules (QTAIM) methods and their applications in crystallographic studies. Readers will be interested in the Foreword written by Nobel Laureate Ada Yonath and the Epilogue by noted science philosopher Olimpia Lombardi.
This new book brings together the latest information on intermolecular bonding within molecular crystals, providing a very useful introductory text for graduates.
The philosophy of chemistry has emerged in recent years as a new and autonomous field within the Anglo-American philosophical tradition. With the development of this new discipline, Eric Scerri and Grant Fisher's "Essays in Philosophy of Chemistry" is a timely and definitive guide to all current thought in this field. One of the themes of this collection is how philosophy of chemistry can make a contributions to problems of philosophy more generally, such as how chemistry and quantum chemistry contribute to the philosophy of the mind.
The work provides fundamental expertise of quantum optics and photonic quantum technology with particular attention to the generation of non-classical light with semiconductor nanostructures. The book is written by experimentalists for experimentalists at various career stages: physics and engineering students, researchers in quantum optics, industry experts in quantum technology. A didactical structure is followed, having in each chapter overview and summary of the discussed topics, allowing for a quick consultation. The book covers: