You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. From a mathematical point of view, it involves a large body of knowledge. Significant progress in the understanding of such systems has been made during the last decade. These books present in a self-contained way the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications. In Volume I the Hamiltonian description of quantum open systems is discussed. This includes an introduction to quant...
"Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. From a mathematical point of view, it involves a large body of knowledge. Significant progress in the understanding of such systems has been made during the last decade. These books present in a self-contained way the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications."--Publisher's description.
Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. Significant progress in the understanding of such systems has been made recently. These books present the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications.
This book collects selected papers written by invited and plenary speakers of the 15th International Congress on Mathematical Physics (ICMP) in the aftermath of the conference. In extensive review articles and expository texts as well as advanced research articles the world leading experts present the state of the art in modern mathematical physics. New mathematical concepts and ideas are introduced by prominent mathematicalphysicists and mathematicians, covering among others the fields of Dynamical Systems, Operator Algebras, Partial Differential Equations, Probability Theory, Random Matrices, Condensed Matter Physics, Statistical Mechanics, General Relativity, Quantum Mechanics, Quantum Field Theory, Quantum Information and String Theory. All together the contributions in this book give a panoramic view of the latest developments in mathematical physics. They will help readers with a general interest in mathematical physics to get an update on the most recent developments in their field, and give a broad overview on actual and future research directions in this fascinating and rapidly expanding area.
Stochastic Differential Equations have become increasingly important in modelling complex systems in physics, chemistry, biology, climatology and other fields. This book examines and provides systems for practitioners to use, and provides a number of case studies to show how they can work in practice.
This volume consists of refereed research articles written by some of the speakers at this international conference in honor of the sixty-fifth birthday of Jean-Michel Combes. The topics span modern mathematical physics with contributions on state-of-the-art results in the theory of random operators, including localization for random Schrodinger operators with general probability measures, random magnetic Schrodinger operators, and interacting multiparticle operators with random potentials; transport properties of Schrodinger operators and classical Hamiltonian systems; equilibrium and nonequilibrium properties of open quantum systems; semiclassical methods for multiparticle systems and long-time evolution of wave packets; modeling of nanostructures; properties of eigenfunctions for first-order systems and solutions to the Ginzburg-Landau system; effective Hamiltonians for quantum resonances; quantum graphs, including scattering theory and trace formulas; random matrix theory; and quantum information theory. Graduate students and researchers will benefit from the accessibility of these articles and their current bibliographies.
This volume presents the proceedings of the 9th International Conference on Differential Equations and Mathematical Physics. It contains 29 research and survey papers contributed by conference participants. The conference provided researchers a forum to present and discuss their recent results in a broad range of areas encompassing the theory of differential equations and their applications in mathematical physics. Papers in this volume represent some of the most interesting results and the major areas of research that were covered, including spectral theory with applications to non-relativistic and relativistic quantum mechanics, including time-dependent and random potential, resonances, many body systems, pseudodifferential operators and quantum dynamics, inverse spectral and scattering problems, the theory of linear and nonlinear partial differential equations with applications in fluid dynamics, conservation laws and numerical simulations, as well as equilibrium and nonequilibrium statistical mechanics. The volume is intended for graduate students and researchers interested in mathematical physics.
This collection is devoted to problems of operator theory with a random potential and a number of problems of statistical physics. For the Schrodinger operator with a potential randomly depending on time, mean wave operators, and the mean scattering operator are computed, and it is shown that the averaged dynamics behaves like free dynamics in the limit of infinite time. Results of applying the method of functional integration to some problems of statistical physics are presented: the theory of systems with model Hamiltonians and their dynamics, ferromagnetic systems of spin 1/2, Coulomb and quantum crystals. This collection is intended for specialists in spectral theory and statistical physics.
This book presents four survey articles on various aspects of open quantum systems, specifically addressing quantum Markovian processes, Feller semigroups and nonequilibrium dynamics. The contributions are based on lectures given by distinguished experts at a summer school in Göttingen, Germany. Starting from basic notions, the authors of these lecture notes accompany the reader on a journey up to the latest research, highlighting new challenges and addressing unsolved problems at the interface between mathematics and physics. Though the book is primarily addressed to graduate students, it will also be of interest to researchers.