You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This new edition of the unrivalled textbook introduces the fundamental concepts of quantum mechanics such as waves, particles and probability before explaining the postulates of quantum mechanics in detail. In the proven didactic manner, the textbook then covers the classical scope of introductory quantum mechanics, namely simple two-level systems, the one-dimensional harmonic oscillator, the quantized angular momentum and particles in a central potential. The entire book has been revised to take into account new developments in quantum mechanics curricula. The textbook retains its typical style also in the new edition: it explains the fundamental concepts in chapters which are elaborated in...
None
This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications. * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard...
Photons and Atoms Photons and Atoms: Introduction to Quantum Electrodynamics provides the necessary background to understand the various physical processes associated with photon-atom interactions. It starts with elementary quantum theory and classical electrodynamics and progresses to more advanced approaches. A critical comparison is made between these different, although equivalent, formulations of quantum electrodynamics. Using this format, the reader is offered a gradual, yet flexible introduction to quantum electrodynamics, avoiding formal discussions and excessive shortcuts. Complementing each chapter are numerous examples and exercises that can be used independently from the rest of the book to extend each chapter in many disciplines depending on the interests and needs of the reader.
Atom-Photon Interactions: Basic Processes and Applications allows the reader to master various aspects of the physics of the interaction between light and matter. It is devoted to the study of the interactions between photons and atoms in atomic and molecular physics, quantum optics, and laser physics. The elementary processes in which photons are emitted, absorbed, scattered, or exchanged between atoms are treated in detail and described using diagrammatic representation. The book presents different theoretical approaches, including: Perturbative methods The resolvent method Use of the master equation The Langevin equation The optical Bloch equations The dressed-atom approach Each method is presented in a self-contained manner so that it may be studied independently. Many applications of these approaches to simple and important physical phenomena are given to illustrate the potential and limitations of each method.
The molecular modeling perspective in drug design. (N. Calude Cohen). Molecular graphics and modeling: tools of the trade. (Roderick E. Hubbard). Molecular modeling of small molecules. (Tamara Gund). Computer assisted new lead design. (Akiko Itai, Miho Yamada Mizutani, Yoshihiko Nishibata, and Nubuo Tomioka). Experimental techniques and data banks. (John P. Priestle and C. Gregory Paris). Computer-assisted drug discovery. (Peter Gund, Gerald Maggiora, and James P. Snyder). Modeling drug-receptor interactions. (Konrad F. Koehler, Shashidhar N. Rao, and James P. Snyder). Glossary of terminology. (J. P. Tollenaere).
“French Nobel Laureate Claude Cohen-Tannoudji is second to none in his understanding of the modern theory and application of atom-photon interactions. He is also known for his lucid and accessible writing style … Advances in Atomic Physics is an impressive and wonderful-to-read reference text … Certainly researchers in the fields of atom-photon interactions and atom traps will want it as a reference on their bookshelves … A selection of chapters may be of benefit to students: the early chapters for those entering the field, the later chapters for those already doing atom-laser PhD thesis work.”Physics TodayThis book presents a comprehensive overview of the spectacular advances seen...
Covering a number of important subjects in quantum optics, this textbook is an excellent introduction for advanced undergraduate and beginning graduate students, familiarizing readers with the basic concepts and formalism as well as the most recent advances. The first part of the textbook covers the semi-classical approach where matter is quantized, but light is not. It describes significant phenomena in quantum optics, including the principles of lasers. The second part is devoted to the full quantum description of light and its interaction with matter, covering topics such as spontaneous emission, and classical and non-classical states of light. An overview of photon entanglement and applications to quantum information is also given. In the third part, non-linear optics and laser cooling of atoms are presented, where using both approaches allows for a comprehensive description. Each chapter describes basic concepts in detail, and more specific concepts and phenomena are presented in 'complements'.
One of the most remarkable things about the Jewish people over the last several thousand years has been their creativity in many fields, especially in science. They have also been impressive in their participation in questioning values, dismantling dogmas, and the disruption of hidden forces. We must underscore the fact that the contribution of Jews to science was out of proportion to the percentage of the population that they represent. In illustrating the lives and work of these 33 Nobel Prize winners in physics, the author analyzes the factors which favored these prodigious breakthroughs by Jewish scholars. “In the first part of the book, the author shows us with great erudition that the quest and great respect for knowledge have always marked the Jewish communities. The second part shows us an impressive fresco of contemporary physics where, in one Nobel Prize biography after another with lively and easy-to-read texts, we follow the development of a beautiful epic through the entire twentieth century.” — from the Foreword by Maurice Jacob/CERN
Underpinning all the other branches of science, physics affects the way we live our lives, and ultimately how life itself functions. Recent scientific advances have led to dramatic reassessment of our understanding of the world around us, and made a significant impact on our lifestyle. In this book, leading international experts, including Nobel prize winners, explore the frontiers of modern physics, from the particles inside an atom to the stars that make up a galaxy, from nano-engineering and brain research to high-speed data networks. Revealing how physics plays a vital role in what we see around us, this book will fascinate scientists of all disciplines, and anyone wanting to know more about the world of physics today.