You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is a text that contains the latest in thinking and the best in practice. It provides a state-of-the-art statement on tertiary teaching from a multi-perspective standpoint. No previous book has attempted to take such a wide view of the topic. The book will be of special interest to academic mathematicians, mathematics educators, and educational researchers. It arose from the ICMI Study into the teaching and learning of mathematics at university level (initiated at the conference in Singapore, 1998).
The book aims at showing the state-of-the-art in the field of modeling and applications in mathematics education. This is the first volume to do this. The book deals with the question of how key competencies of applications and modeling at the heart of mathematical literacy may be developed; with the roles that applications and modeling may play in mathematics teaching, making mathematics more relevant for students.
Theorems and their proofs lie at the heart of mathematics. In speaking of the purely aesthetic qualities of theorems and proofs, G. H. Hardy wrote that in beautiful proofs 'there is a very high degree of unexpectedness, combined with inevitability and economy'. Charming Proofs presents a collection of remarkable proofs in elementary mathematics that are exceptionally elegant, full of ingenuity, and succinct. By means of a surprising argument or a powerful visual representation, the proofs in this collection will invite readers to enjoy the beauty of mathematics, and to develop the ability to create proofs themselves. The authors consider proofs from topics such as geometry, number theory, inequalities, plane tilings, origami and polyhedra. Secondary school and university teachers can use this book to introduce their students to mathematical elegance. More than 130 exercises for the reader (with solutions) are also included.
Proofs without words (PWWs) are figures or diagrams that help the reader see why a particular mathematical statement is true, and how one might begin to formally prove it true. PWWs are not new, many date back to classical Greece, ancient China, and medieval Europe and the Middle East. PWWs have been regular features of the MAA journals Mathematics Magazine and The College Mathematics Journal for many years, and the MAA published the collections of PWWs Proofs Without Words: Exercises in Visual Thinking in 1993 and Proofs Without Words II: More Exercises in Visual Thinking in 2000. This book is the third such collection of PWWs.
An exploration of the mathematics of twenty geometric diagrams that play a crucial role in visualizing mathematical proofs. Those teaching undergraduate mathematics will find material here for problem solving sessions, as well as enrichment material for courses on proofs and mathematical reasoning.
This book is a quick but precise and careful introduction to the subject of functional analysis. It covers the basic topics that can be found in a basic graduate analysis text. But it also covers more sophisticated topics such as spectral theory, convexity, and fixed-point theorems. A special feature of the book is that it contains a great many examples and even some applications. It concludes with a statement and proof of Lomonosov's dramatic result about invariant subspaces.
Insightful overview of many kinds of algebraic structures that are ubiquitous in mathematics. For researchers at graduate level and beyond.
An accessible introduction to the plane algebraic curves that also serves as a natural entry point to algebraic geometry. This book can be used for an undergraduate course, or as a companion to algebraic geometry at graduate level.
Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.
Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2006! Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.