You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book focuses on the mechanical properties of cells, discussing the basic concepts and processes in the fields of immunology, biology, and biochemistry. It introduces and explains state-of-the-art biophysical methods and examines the role of mechanical properties in the cell/protein interaction with the connective tissue microenvironment. The book presents a unique perspective on cellular mechanics and biophysics by combining the mechanical, biological, physical, biochemical, medical, and immunological views, highlighting the importance of the mechanical properties of cells and biophysical measurement methods. The book guides readers through the complex and growing field of cellular mechanics and biophysics, connecting and discussing research findings from different fields such as biology, cell biology, immunology, physics, and medicine. Featuring suggestions for further reading throughout and addressing a wide selection of biophysical topics, this book is an indispensable guide for graduate and advanced undergraduate students in the fields of cellular mechanics and biophysics.
The endothelium is an excellent example of where biology meets physics and engineering. It must convert mechanical forces into chemical signals to maintain homeostasis. It also controls the immune response, drug delivery through the vasculature, and cancer metastasis. Basic understanding of these processes is starting to emerge and the knowledge ga
"There is something special about cancer compared to other diseases. It is a horrific disease that has defied attempts to find a reliable cure. Life spans after diagnosis have increased, but the mortality rate has remained about the same even after 40 years of extensive research. Cancer provides a major scientific challenge. Tumors evolve and spread in response to internal and external factors that involve feed-back mechanisms and non-linear behavior. In recent years, physicists have become involved in studying cancer, with the ultimate aim of finding a cure. Physicists approach a problem with unique experimental, theoretical, and computational skills and perspectives. This book will be comprised of chapters written by physicists from all over the world who perform research on cancer. They will describe their research and summarize their results."--Provided by the publisher.
The tumour microenvironment is increasingly recognized as an important contributor to cancer progression and treatment. However, most cancer studies continue to be performed in 2D tissue culture dishes that do not capture the characteristics of the tumour niche. This book provides an introduction to the rich chemical, topographical, and mechanical cues in the tumour microenvironment and then introduces readers to bioengineering strategies, including scaffold design and synthesis, chemical signalling and delivery, and co-culture, microfluidics, and organ-on-a-chip tools that can be used to mimic tumour microenvironment features. This book also includes discussion of emerging imaging methods compatible with tumour microenvironment mimicking biomaterials and discusses applications of such models in immuno-oncology, metastasis, and drug screening. Edited by two leaders in the field, this book will appeal to graduate students and researchers working in biomaterials science, chemical and biomedical engineering departments.
ImmunoPhysics (ImmPhys) and ImmunoEngineering (ImmPhysEng), are two cross-disciplinary fields. ImmPhysEng aims to unravel quantitatively the immune-system function and regulation in health and disease. Whereas ImmPhys study and assess the physical basis of the immune response, ImmEng pursues its control and prediction. Ultimately, the overarching goal of these disciplines is to facilitate the development of therapeutic interventions to more precisely modulate and control the compromised immune response during diseases. Lately, these disciplines are becoming more popular and as such, the number of publications applying physical or engineering tools to understand the immune response is increasing. Nevertheless, there is still no scientific forum compiling the ImmPhysEng research breakthroughs. Possibly the biggest burden is to stimulate a fluent communication and syntony between a physicist or engineer and an immunologist.
Magnetic Tweezers for the Study of Protein Structure and Function, Volume 694 in the Methods in Enzymology serial highlights new advances in the field, with this new volume presenting interesting chapters on a variety of topics, including Single membrane protein tethering for magnetic tweezer experiments, Membrane protein folding studies using a robust magnetic tweezer method, Magnetic tweezers in cell mechanics, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods in Enzymology serials - Updated release includes the latest information on Magnetic Tweezers for the Study of Protein Structure and Function