You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book gives a comprehensive review of the present state-of-the-art in ZnO R+D, including growth, doping, lattice dynamics, electric magnetic and optical properties. The emphasis is on the electric and optical properties, because this is the area where novel applications may be expected with highest promise. The book highlights not only the most recent results but gives both an overview of past research and of the present status -- not avoiding critical and controversial discussions of various aspects such as bank symmetries and laser processes. Intended to have long-lasting impact on ZnO R+D, this monograph addresses (post-)graduate students but also advanced scientists, who want to embark on ZnO research or are already involved, the present state of the art and assists them in avoiding duplication of old results (or mistakes).
This revised and updated edition of the well-received book by C. Klingshirn provides an introduction to and an overview of all aspects of semiconductor optics, from IR to visible and UV. It has been split into two volumes and rearranged to offer a clearer structure of the course content. Inserts on important experimental techniques as well as sections on topical research have been added to support research-oriented teaching and learning. Volume 1 provides an introduction to the linear optical properties of semiconductors. The mathematical treatment has been kept as elementary as possible to allow an intuitive approach to the understanding of results of semiconductor spectroscopy. Building on...
The updated and enlarged new edition of this book provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV. It includes coverage of linear and nonlinear optical properties, dynamics, magneto- and electrooptics, high-excitation effects, some applications, experimental techniques and group theory. The mathematics is kept as elementary as possible. The subjects covered extend from physics to materials science and optoelectronics. New or updated chapters add coverage of current topics, while the chapters on bulk materials have been revised and updated.
Nanophotonics is where photonics merges with nanoscience and nanotechnology, and where spatial confinement considerably modifies light propagation and light-matter interaction. Describing the basic phenomena, principles, experimental advances and potential impact of nanophotonics, this graduate-level textbook is ideal for students in physics, optical and electronic engineering and materials science. The textbook highlights practical issues, material properties and device feasibility, and includes the basic optical properties of metals, semiconductors and dielectrics. Mathematics is kept to a minimum and theoretical issues are reduced to a conceptual level. Each chapter ends in problems so readers can monitor their understanding of the material presented. The introductory quantum theory of solids and size effects in semiconductors are considered to give a parallel discussion of wave optics and wave mechanics of nanostructures. The physical and historical interplay of wave optics and quantum mechanics is traced. Nanoplasmonics, an essential part of modern photonics, is also included.
This book describes advances in both experimental and theoretical treatments in the field of energy transfer processes that are relevant to various fields, such as spectroscopy, laser technology, phosphors, artificial solar energy conversion, and photobiology. It presents the principles and available techniques through specific examples. In addition, it examines current and possible applications, including the most recent developments, and projects future advances and research possibilities in the field. Contents: Fundamental Interactions Leading to Energy Transfer (B Di Bartolo); Energy Transfer Processes in Atoms and Molecules (W DemtrAder et al.); Advances in the Techniques for the Study ...
This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.
William Risk, Timothy Gosnell and Arto Nurmikko have brought together their diverse expertise from industry and academia to write the first fully comprehensive book on the generation and application of blue-green lasers. This volume describes the theory and practical implementation of three techniques for the generation of blue-green light: nonlinear frequency conversion of infrared lasers, upconversion lasers, and wide bandgap semiconductor diode lasers. In addition, it looks at the various applications that have driven the development of compact sources of blue-green light, and reflects on the recent application of these lasers in high-density data storage, color displays, reprographics, and biomedical technology. Compact Blue-Green Lasers is suitable for graduate-level courses or as a reference for academics and professionals in optics, applied physics, and electrical engineering.
Rapid development of microfabrication and assembly of nanostructures has opened up many opportunities to miniaturize structures that confine light, producing unusual and extremely interesting optical properties. This book addresses the large variety of optical phenomena taking place in confined solid state structures: microcavities. Realisations include planar and pillar microcavities, whispering gallery modes, and photonic crystals. The microcavities represent a unique laboratory for quantum optics and photonics. They exhibit a number of beautiful effects including lasing, superfluidity, superradiance, entanglement etc. Written by four practitioners strongly involved in experiments and theories of microcavities, it is addressed to any interested reader having a general physical background, but in particular to undergraduate and graduate students at physics faculties.
This book presents the proceedings of the course "Spectroscopy and Dynamics of Collective Excitations in Solids" held in Erice, Italy from June 17 to July 1, 1995. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The purpose of this course was to present and discuss physical models, mathematical formalisms, experimental techniques and applications relevant to the subject of collective excitations in solids. By bringing together specialists in the field of solid state spectroscopy, this course provided a much needed forum for the critical assessment and evaluation of recent and past developments...