You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The United States manufactured significant quantities of chemical weapons during the Cold War and the years prior. Because the chemical weapons are aging, storage constitutes an ongoing risk to the facility workforces and to the communities nearby. In addition, the Chemical Weapons Convention treaty stipulates that the chemical weapons be destroyed. The United States has destroyed approximately 90 percent of the chemical weapons stockpile located at seven sites. As part of the effort to destroy its remaining stockpile, the Department of Defense is building the Blue Grass Chemical Agent Destruction Pilot Plant (BGCAPP) on the Blue Grass Army Depot (BGAD), near Richmond, Kentucky. The stockpil...
The Pueblo Chemical Depot (PCD) in Colorado is one of two sites that features U.S. stockpile of chemical weapons that need to be destroyed. The PCD features about 2,600 tons of mustard-including agent. The PCD also features a pilot plant, the Pueblo Chemical Agent Destruction Pilot Plant (PCAPP), which has been set up to destroy the agent and munition bodies using novel processes. The chemical neutralization or hydrolysis of the mustard agent produces a Schedule 2 compound called thiodiglycol (TDG) that must be destroyed. The PCAPP uses a combined water recovery system (WRS) and brine reduction system (BRS) to destroy TDG and make the water used in the chemical neutralization well water agai...
The U.S. Army is in the process of destroying the nation's stockpile of aging chemical weapons stored at eight locations in the continental United States and on Johnston Atoll in the Pacific. Originally, incineration was chosen for the destruction of these stores, but this method has met with public opposition, and Congress directed the Army to develop alternative technologies for destroying the stockpiles in Pueblo, CO and Richmond, KY. To assist the Army in this process, the NRC was asked to evaluate the engineering design study of the three Blue Grass candidates. This book presents an analysis of various issues pertaining to the proposed engineering design package for the Blue Grass facility.
1 INTRODUCTION. 2 SOURCERS OF CHLORINE AND HYDROGEN CHLORIDE. 3 CONSUMPTION OF CHLORINE AND HYDROGEN CHLORIDE. 4 ATMOSPHERIC CHEMISTRY OF CHLORINE COMPOUNDS. 5 EFFECTS OF CHLORINE AND HYDROGEN CHLORIDE ON MAN AND ANIMALS. 6 EFFECTS OF CHLORINE AND HYDROGEN CHLORIDE ON VEGETATION. 7 PROPERTY DAMAGE AND PUBLIC NUISANCE. 8 SAFETY IN USE AND HANDLING OF CHLORINE AND ANHYDROUS HYDROGEN CHLORIDE.
Expanding on the National Research Council's Guide for the Care and Use of Laboratory Animals, this book deals specifically with mammals in neuroscience and behavioral research laboratories. It offers flexible guidelines for the care of these animals, and guidance on adapting these guidelines to various situations without hindering the research process. Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research offers a more in-depth treatment of concerns specific to these disciplines than any previous guide on animal care and use. It treats on such important subjects as: The important role that the researcher and veterinarian play in developing animal protocols. Meth...
This open access book offers a timely guide to challenges and current practices to permanently plug and abandon hydrocarbon wells. With a focus on offshore North Sea, it analyzes the process of plug and abandonment of hydrocarbon wells through the establishment of permanent well barriers. It provides the reader with extensive knowledge on the type of barriers, their functioning and verification. It then discusses plug and abandonment methodologies, analyzing different types of permanent plugging materials. Last, it describes some tests for verifying the integrity and functionality of installed permanent barriers. The book offers a comprehensive reference guide to well plugging and abandonmen...
The objective of this Safety Report is to complement IAEA Safety Guide RS-G-1.8 and to provide the methodological and technical details of the design and operation of monitoring programmes for different radionuclides, environmental media and types of facility. It also covers general issues of emergency monitoring during and in the aftermath of an accidental release of radionuclides and gives an outline of dose assessment procedures based on monitoring data and the reporting of information to the regulatory body.