You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In order for the United States to maintain the global leadership and competitiveness in science and technology that are critical to achieving national goals, we must invest in research, encourage innovation, and grow a strong and talented science and technology workforce. Expanding Underrepresented Minority Participation explores the role of diversity in the science, technology, engineering and mathematics (STEM) workforce and its value in keeping America innovative and competitive. According to the book, the U.S. labor market is projected to grow faster in science and engineering than in any other sector in the coming years, making minority participation in STEM education at all levels a na...
The future competitiveness of the United States in an increasingly interconnected global economy depends on the nation fostering a workforce with strong capabilities and skills in science, technology, engineering, and mathematics (STEM). STEM knowledge and skills enable both individual opportunity and national competitiveness, and the nation needs to develop ways of ensuring access to high-quality education and training experiences for all students at all levels and for all workers at all career stages. The National Science Foundation (NSF) holds a primary responsibility for overseeing the federal government's efforts to foster the creation of a STEM-capable workforce. As part of its efforts...
Report of a Workshop on Science, Technology, Engineering, and Mathematics (STEM) Workforce Needs for the U.S. Department of Defense and the U.S. Defense Industrial Base is the summary of a workshop held August 11, 2011, as part of an 18-month study of the issue. This book assesses the STEM capabilities that the Department of Defense (DOD) needs in order to meet its goals, objectives, and priorities; to assess whether the current DOD workforce and strategy will meet those needs; and to identify and evaluate options and recommend strategies that the department could use to help meet its future STEM needs.
An Interim Report on Assuring DoD a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce is a report on the science, technology, mathematics, and engineering (STEM) workforce of the Department of Defense (DOD) and the U.S. defense industrial base is part of an 18-month study to assess the STEM capabilities that the DOD will need in order to meet its goals, objectives, and priorities. This study also assesses whether the current DOD workforce and strategy will meet those needs; and indentifies and evaluates options and recommends strategies that the department could use to help meet its future STEM needs. This study was undertaken by the National Academy of Engineering an...
The ability of the nation's military to prevail during future conflicts, and to fulfill its humanitarian and other missions, depends on continued advances in the nation's technology base. A workforce with robust Science, Technology, Engineering and Mathematics (STEM) capabilities is critical to sustaining U.S. preeminence. Today, however, the STEM activities of the Department of Defense (DOD) are a small and diminishing part of the nation's overall science and engineering enterprise. Assuring the U.S. Department of Defense a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce presents five principal recommendations for attracting, retaining, and managing highly qualified STEM talent within the department based on an examination of the current STEM workforce of DOD and the defense industrial base. As outlined in the report, DOD should focus its investments to ensure that STEM competencies in all potentially critical, emerging topical areas are maintained at least at a basic level within the department and its industrial and university bases.
There are over 20 million young people of color in the United States whose representation in STEM education pathways and in the STEM workforce is still far below their numbers in the general population. Their participation could help re-establish the United States' preeminence in STEM innovation and productivity, while also increasing the number of well-educated STEM workers. There are nearly 700 minority-serving institutions (MSIs) that provide pathways to STEM educational success and workforce readiness for millions of students of colorâ€"and do so in a mission-driven and intentional manner. They vary substantially in their origins, missions, student demographics, and levels of institut...
Skilled technical occupationsâ€"defined as occupations that require a high level of knowledge in a technical domain but do not require a bachelor's degree for entryâ€"are a key component of the U.S. economy. In response to globalization and advances in science and technology, American firms are demanding workers with greater proficiency in literacy and numeracy, as well as strong interpersonal, technical, and problem-solving skills. However, employer surveys and industry and government reports have raised concerns that the nation may not have an adequate supply of skilled technical workers to achieve its competitiveness and economic growth objectives. In response to the broader need for policy information and advice, Building America's Skilled Technical Workforce examines the coverage, effectiveness, flexibility, and coordination of the policies and various programs that prepare Americans for skilled technical jobs. This report provides action-oriented recommendations for improving the American system of technical education, training, and certification.
Mentorship is a catalyst capable of unleashing one's potential for discovery, curiosity, and participation in STEMM and subsequently improving the training environment in which that STEMM potential is fostered. Mentoring relationships provide developmental spaces in which students' STEMM skills are honed and pathways into STEMM fields can be discovered. Because mentorship can be so influential in shaping the future STEMM workforce, its occurrence should not be left to chance or idiosyncratic implementation. There is a gap between what we know about effective mentoring and how it is practiced in higher education. The Science of Effective Mentorship in STEMM studies mentoring programs and practices at the undergraduate and graduate levels. It explores the importance of mentorship, the science of mentoring relationships, mentorship of underrepresented students in STEMM, mentorship structures and behaviors, and institutional cultures that support mentorship. This report and its complementary interactive guide present insights on effective programs and practices that can be adopted and adapted by institutions, departments, and individual faculty members.
The U.S. system of graduate education in science, technology, engineering, and mathematics (STEM) has served the nation and its science and engineering enterprise extremely well. Over the course of their education, graduate students become involved in advancing the frontiers of discovery, as well as in making significant contributions to the growth of the U.S. economy, its national security, and the health and well-being of its people. However, continuous, dramatic innovations in research methods and technologies, changes in the nature and availability of work, shifts in demographics, and expansions in the scope of occupations needing STEM expertise raise questions about how well the current...
The Air Force requires technical skills and expertise across the entire range of activities and processes associated with the development, fielding, and employment of air, space, and cyber operational capabilities. The growing complexity of both traditional and emerging missions is placing new demands on education, training, career development, system acquisition, platform sustainment, and development of operational systems. While in the past the Air Force's technologically intensive mission has been highly attractive to individuals educated in science, technology, engineering, and mathematics (STEM) disciplines, force reductions, ongoing military operations, and budget pressures are creatin...