You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The past half-century has witnessed a dramatic increase in the scale and complexity of scientific research. The growing scale of science has been accompanied by a shift toward collaborative research, referred to as "team science." Scientific research is increasingly conducted by small teams and larger groups rather than individual investigators, but the challenges of collaboration can slow these teams' progress in achieving their scientific goals. How does a team-based approach work, and how can universities and research institutions support teams? Enhancing the Effectiveness of Team Science synthesizes and integrates the available research to provide guidance on assembling the science team;...
Collaborations that integrate diverse perspectives are critical to addressing many of our complex scientific and societal problems. Yet those engaged in cross-disciplinary team science often face institutional barriers and collaborative challenges. Strategies for Team Science Success offers readers a comprehensive set of actionable strategies for reducing barriers and overcoming challenges and includes practical guidance for how to implement effective team science practices. More than 100 experts--including scientists, administrators, and funders from a wide range of disciplines and professions-- explain evidence-based principles, highlight state-of the-art strategies, tools, and resources, ...
Why collaborations in STEM fields succeed or fail and how to ensure success Once upon a time, it was the lone scientist who achieved brilliant breakthroughs. No longer. Today, science is done in teams of as many as hundreds of researchers who may be scattered across continents. These collaborations can be powerful, but they also demand new ways of thinking. The Strength in Numbers illuminates the nascent science of team science by synthesizing the results of the most far-reaching study to date on collaboration among university scientists. Drawing on a national survey with responses from researchers at more than one hundred universities, archival data, and extensive interviews with scientists and engineers in over a dozen STEM disciplines, Barry Bozeman and Jan Youtie establish a framework for characterizing different collaborations and their outcomes, and lay out what they have found to be the gold-standard approach: consultative collaboration management. The Strength in Numbers is an indispensable guide for scientists interested in maximizing collaborative success.
How technology and bureaucracy shape collaborative scientific research projects: an empirical study of multiorganizational collaboration in the physical sciences. Collaboration among organizations is rapidly becoming common in scientific research as globalization and new communication technologies make it possible for researchers from different locations and institutions to work together on common projects. These scientific and technological collaborations are part of a general trend toward more fluid, flexible, and temporary organizational arrangements, but they have received very limited scholarly attention. Structures of Scientific Collaboration is the first study to examine multi-organiz...
No organization made up of human beings is immune from the all-too-common meeting gripes: those that fail to engage, those that inadvertently encourage participants to tune out, and those that blatantly disregard participants' time. In The Surprising Science of Meetings, Steven G. Rogelberg draws from extensive research, analytics and data mining, and survey interviews to share the proven techniques that help managers and employees change the way they run meetings and upgrade the quality of their working hours.
An essential introduction to the responsible conduct of science in today's interconnected world This concise introductory guide explains the values that should inform the responsible conduct of scientific research in today's global setting. Featuring accessible discussions and ample real-world scenarios, Doing Global Science covers proper conduct, fraud and bias, the researcher's responsibilities to society, communication with the public, and much more. The book places special emphasis on the international and highly networked environment in which modern research is done, presenting science as an enterprise that is being transformed by globalization, interdisciplinary research projects, team...
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues ...
Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establis...
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science ...
Convergence of the life sciences with fields including physical, chemical, mathematical, computational, engineering, and social sciences is a key strategy to tackle complex challenges and achieve new and innovative solutions. However, institutions face a lack of guidance on how to establish effective programs, what challenges they are likely to encounter, and what strategies other organizations have used to address the issues that arise. This advice is needed to harness the excitement generated by the concept of convergence and channel it into the policies, structures, and networks that will enable it to realize its goals. Convergence investigates examples of organizations that have established mechanisms to support convergent research. This report discusses details of current programs, how organizations have chosen to measure success, and what has worked and not worked in varied settings. The report summarizes the lessons learned and provides organizations with strategies to tackle practical needs and implementation challenges in areas such as infrastructure, student education and training, faculty advancement, and inter-institutional partnerships.