You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Hierarchical Composite Materials provides an in-depth analysis of a class of advanced composites that have properties that are anisotropic due to structural organization at different length scales. Chapters address how ordering occurs from the atomic-scale up to the microstructure and how control of these factors leads to the final materials' properties. Manufacturing procedures, properties, and applications of different functionally graded materials are discussed in detail. This book is ideal for materials scientists, mechanical engineers, chemists and physicists.
This specialist monograph provides an overview of the recent research on the fundamental and applied properties of nanoparticles extracted from cellulose, the most abundant polymer on the planet and an ubiquitous essential renewable resource. Given the rapid advances in the field and the high level of interest within the scientific and industrial communities, this revised and updated second edition expands the broad overview of recent research and will be required reading for all those working with nanocellulose in the life sciences and bio-based applications, biological, chemical and agricultural engineering, organic chemistry and materials science. It combines a general introduction to cellulose and basic techniques with more advanced chapters on specific properties, applications and current scientific developments of nanocellulose. The book profits from the author’s extensive knowledge of cellulose nanocomposite materials.
Presents polymer-based fibre reinforced composite materials and addresses the characteristics of these widely used materials like low density and coefficient of thermal expansion, specific strength with better fatigue resistance and modulus. The topics discussed are laser-based material machining, high-speed robotic end milling and LFRP modeling, including definitions, features, machine elements (system set-up) as well as experimental and theoretical investigations. These investigations include effects of input variables (tool rotation speed, feed rate and ultrasonic power) on cutting force, torque, cutting temperature, edge quality, surface roughness, burning of machined surface, tool wear,...
Joining techniques in engineering are of major importance. Innovations in the field of composites now allows design of nanomaterials with tailored properties. This book adresses techniques for similar and dissimilar joining, characterization of joint structures and damage prediction by simulation. A special focus is laid on welding of lightweight structures, which are of special economic interest for aeronautical and automotive applications.
Wood composites as part of wood engineering materials has been reaching a constant developing trend, being used on a wide range of applications and becoming worldwide as a very promising alternate material face to traditional building materials such as concrete, metal and plastics. In this part of the series are treated aspects among which advances functionalities in laminates, the activation of natural fibres, the natural matrix, and others industrials manufacturing research advances for wood material as composite.
Composite materials are engineered from two or more constituents with significantly altered physical or chemical properties within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials. This book, written by experts from all over the world, presents fundamentals and recent advances on ceramic matrix composites.
This book is intended for researchers who are interested in investigating the nanomechanical properties of materials using advanced instrumentation techniques. The chapters of the book are written in an easy-to-follow format, just like solved examples. The book comprehensively covers a broad range of materials such as polymers, ceramics, hybrids, biomaterials, metal oxides, nanoparticles, minerals, carbon nanotubes and welded joints. Each chapter describes the application of techniques on the selected material and also mentions the methodology adopted for the extraction of information from the raw data. This is a unique book in which both equipment manufacturers and equipment users have cont...
The research on carbon dots is evolving and expanding very rapidly. A high-tech overview for academia and industry is needed to modernize carbon dots in biological applications. This book covers the use of carbon dots in biology, medicine, and pharmacy: synthesis, properties and applications, obstacles in exploiting these materials, and future research prospects. The reader is able to explore the wide scope of carbon dots in the global market.
Micro and nano devices are an integral part of modern technology. To address the requirements of the state-of-the-art technology, topics are selected from both chip-based and flexible electronics. A wide range of carbon materials including graphene, carbon nanotube, glass-like carbon, porous carbon, carbon black, graphite, carbon nanofiber, laser-patterned carbon and heteroatom containing carbon are covered. This goal is to elucidate fundamental carbon material science along with compatible micro- and nanofabrication techniques. Real-life example of sensors, energy storage and generation devices, MEMS, NEMS and implantable bioelectronics enable visualization of the outcome of described processes. Students will also benefit from the attractive aspects of carbon science explained in simple terms. Hybridization, allotrope classification and microstructural models are presented with a whole new outlook. Discussions on less-studied, hypothetical and undiscovered carbon forms render the contents futuristic and highly appealing.
Corrosion is a high-cost and potentially hazardous issue in numerous industries. The potential use of diverse carbon nanoallotropes in corrosion protection, prevention and control is a subject of rising attention. This book covers the current advancements of carbon nanoallotropes in metal corrosion management, including the usage of nanostructure materials to produce high-performance corrosion inhibitors and corrosion-resistant coatings.