You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Provides the first systematic study of geometry and topology of locally symmetric rank one manifolds and dynamics of discrete action of their fundamental groups. In addition to geometry and topology, this study involves several other areas of Mathematics – from algebra of varieties of groups representations and geometric group theory, to geometric analysis including classical questions from function theory.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, Univ...
The subject of Kleinian groups and hyperbolic 3-manifolds is currently undergoing explosively fast development, with many old problems and conjectures close to resolution. This volume, proceedings of the Warwick workshop in September 2001, contains expositions of many of these breakthroughs including Minsky's lectures on the first half of the proof of the Ending Lamination Conjecture, the Bers Density Conjecture by Brock and Bromberg, the Tameness Conjecture by Kleineidam and Souto, the state of the art in cone manifolds by Hodgson and Kerckhoff, and the counter example to Thurston's K=2 conjecture by Epstein, Marden and Markovic. It also contains Jørgensen's famous paper 'On pairs of once punctured tori' in print for the first time. The excellent collection of papers here will appeal to graduate students, who will find much here to inspire them, and established researchers who will find this valuable as a snapshot of current research.
Introductory text for advanced undergraduates and graduate students presents systematic study of the topological structure of smooth manifolds, starting with elements of theory and concluding with method of surgery. 1993 edition.
This volume contains the proceedings of the virtual workshop on Computational Aspects of Discrete Subgroups of Lie Groups, held from June 14 to June 18, 2021, and hosted by the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The major theme deals with a novel domain of computational algebra: the design, implementation, and application of algorithms based on matrix representation of groups and their geometric properties. It is centered on computing with discrete subgroups of Lie groups, which impacts many different areas of mathematics such as algebra, geometry, topology, and number theory. The workshop aimed to synergize independent strands in the area of computing with discrete subgroups of Lie groups, to facilitate solution of theoretical problems by means of recent advances in computational algebra.
This volume contains the proceedings of the Stanford Symposium on Algebraic Topology: Applications and New Directions, held from July 23-27, 2012, at Stanford University, Stanford, California. The symposium was held in honor of Gunnar Carlsson, Ralph Cohen and Ib Madsen, who celebrated their 60th and 70th birthdays that year. It showcased current research in Algebraic Topology reflecting the celebrants' broad interests and profound influence on the subject. The topics varied broadly from stable equivariant homotopy theory to persistent homology and application in data analysis, covering topological aspects of quantum physics such as string topology and geometric quantization, examining homology stability in algebraic and geometric contexts, including algebraic -theory and the theory of operads.
This book contains the proceedings of the conference Geometry & Topology Down Under, held July 11-22, 2011, at the University of Melbourne, Parkville, Australia, in honour of Hyam Rubinstein. The main topic of the book is low-dimensional geometry and topology. It includes both survey articles based on courses presented at the conferences and research articles devoted to important questions in low-dimensional geometry. Together, these contributions show how methods from different fields of mathematics contribute to the study of 3-manifolds and Gromov hyperbolic groups. It also contains a list of favorite problems by Hyam Rubinstein.
This volume contains the proceedings of the AMS Special Session on Discrete Geometry and Algebraic Combinatorics held on January 11, 2013, in San Diego, California. The collection of articles in this volume is devoted to packings of metric spaces and related questions, and contains new results as well as surveys of some areas of discrete geometry. This volume consists of papers on combinatorics of transportation polytopes, including results on the diameter of graphs of such polytopes; the generalized Steiner problem and related topics of the minimal fillings theory; a survey of distance graphs and graphs of diameters, and a group of papers on applications of algebraic combinatorics to packings of metric spaces including sphere packings and topics in coding theory. In particular, this volume presents a new approach to duality in sphere packing based on the Poisson summation formula, applications of semidefinite programming to spherical codes and equiangular lines, new results in list decoding of a family of algebraic codes, and constructions of bent and semi-bent functions.
This series is devoted to the publication of monographs, lecture resp. seminar notes, and other materials arising from programs of the OSU Mathemaical Research Institute. This includes proceedings of conferences or workshops held at the Institute, and other mathematical writings.
Discrete Differential Geometry (DDG) is an emerging discipline at the boundary between mathematics and computer science. It aims to translate concepts from classical differential geometry into a language that is purely finite and discrete, and can hence be used by algorithms to reason about geometric data. In contrast to standard numerical approximation, the central philosophy of DDG is to faithfully and exactly preserve key invariants of geometric objects at the discrete level. This process of translation from smooth to discrete helps to both illuminate the fundamental meaning behind geometric ideas and provide useful algorithmic guarantees. This volume is based on lectures delivered at the 2018 AMS Short Course ``Discrete Differential Geometry,'' held January 8-9, 2018, in San Diego, California. The papers in this volume illustrate the principles of DDG via several recent topics: discrete nets, discrete differential operators, discrete mappings, discrete conformal geometry, and discrete optimal transport.