You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
H2S in Plants: Past, Present and Beyond presents translational insights from animal to plant application. The recent discovery of several aspects of the function of H2S and its homeostasis in plant cells was propelled by discoveries in mammalian models. Based on the practical application of those analytical methods to plant science, this book will guide readers in the identification and qualification of this gasotransmitter in plant cell function. In addition, it explores important roles in complex signaling networks together with calcium cations, nitric oxide, hydrogen peroxide and plant hormones.Presenting detailed descriptions of analytical methodologies, this book will enable the reader to determine H2S presence and understand it's potential in improving stress resistance and crop productivity. - Presents the integrated role of H2S in plant cells - Identifies methods for determining H2S in plants - Establishes feasible strategies based on H2S to improve food production
The vast and exciting Brazilian flora biodiversity is still underexplored. Several research groups are devoted to the study of the chemical structure richness found in the different Biomes. This volume presents a comprehensive account of the research collated on natural products produced from Brazilian medicinal plants and focuses on various aspects of the field. The authors describe the key natural products and their extracts with emphasis upon sources, an appreciation of these complex molecules and applications in science. Many of the extracts are today associated with important drugs, nutrition products, beverages, perfumes, cosmetics and pigments, and these are highlighted. Key Features: Presents Brazilian biodiversity: its flora, its people, and its research Describes the emergence of natural products research in Brazil Emphasizes the increasing global interests in botanical drugs Aids the international natural product communities to better understand the herbal resources in Brazil Discusses Brazilian legislation to work with native plants
Environmental stresses represent the most limiting factors for agricultural productivity. Apart from biotic stress caused by plant pathogens, there are a number of abiotic stresses such as extremes in temperature, drought, salinity, heavy metals and radiation which all have detrimental effects on plant growth and yield. However, certain plant species and ecotypes have developed various mechanisms to adapt to such stress conditions. Recent advances in the understanding of these abiotic stress responses provided the impetus for compiling up-to-date reviews discussing all relevant topics in abiotic stress signaling of plants in a single volume. Topical reviews were prepared by selected experts and contain an introduction, discussion of the state of the art and important future tasks of the particular fields.
Climate change is a complex phenomenon with a wide range of impacts on the environment. Biotic and abiotic stress are a result of climate change. Abiotic stress is caused by primary and secondary stresses which are an impediment to plant productivity. Prolonged exposure to these stresses results in altered metabolism and damage to biomolecules. Plants evolve defense mechanisms to withstand these stresses, e.g. synthesis of osmolytes, osmoprotectants, and antioxidants. Stress responsive genes and gene products including expressed proteins are implicated in conferring tolerance to the plant. This volume will provide the reader with a wide spectrum of information, including vital references. It...
Plants under abiotic stress are those suffering from drought, extreme temperatures, flood and other natural—but non-living—factors. Abiotic stress is responsible for reduced yields in several major crops, and climate change is focusing research in this area. To minimize cellular damage cause by such stresses, plants have evolved complex, well-coordinated adaptive responses that operate at the transcriptional level. Understanding these processes is key to manipulating plant performance to withstand stress. This book deals with the role of gene silencing in the adaptation of plants to these stresses, and documents the molecular regulatory systems for the abiotic response.
Molecular oxygen deficiency leads to altered cellular metabolism and can dramatically reduce crop productivity. Nearly all crops are negatively affected by a lack of oxygen (hypoxia) due to adverse environmental conditions such as excessive rain and soil waterlogging. Extensive efforts to fully understand how plants sense oxygen deficiency and their ability to respond using different strategies are crucial to increase hypoxia tolerance. Progress in our understanding has been significant in recent years. This topic certainly deserves more attention from the academic community; therefore, we have compiled a series of articles reflecting the advancements made thus far.
Laws, decrees, and administrative acts of government.
Nitric Oxide in Plant Biology: An Ancient Molecule with Emerging Roles is an extensive volume which provides a broad and detailed overview of Nitric Oxide (NO) in plant biology. The book covers the entirety of the crucial role NO plays in the plant lifecycle, from the regulation of seed germination and growth to synthesis, nitrogen fixation and stress response. Beginning with NO production and NO homeostasis, Nitric Oxide in Plant Biology goes on to cover a variety of NO roles, with a focus on NO signalling, crosstalk and stress responses. Edited by leading experts in the field and featuring the latest research from laboratories from across the globe, it is a comprehensive resource of interest to students and researchers working in plant physiology, agriculture, biotechnology, and the pharmaceutical and food industries. - Provides a broad and detailed overview on NO in plant biology, including NO production, NO signaling, NO homeostasis, crosstalk and stress responses - Edited by leading experts in the field - Features the latest research from laboratories from across the globe