You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This text is aimed at graduate students in mathematics and to interested researchers who wish to acquire an in depth understanding of Euclidean Harmonic analysis. The text covers modern topics and techniques in function spaces, atomic decompositions, singular integrals of nonconvolution type and the boundedness and convergence of Fourier series and integrals. The exposition and style are designed to stimulate further study and promote research. Historical information and references are included at the end of each chapter. This third edition includes a new chapter entitled "Multilinear Harmonic Analysis" which focuses on topics related to multilinear operators and their applications. Sections 1.1 and 1.2 are also new in this edition. Numerous corrections have been made to the text from the previous editions and several improvements have been incorporated, such as the adoption of clear and elegant statements. A few more exercises have been added with relevant hints when necessary.
This volume contains the Proceedings of the 9th International Conference on Harmonic Analysis and Partial Differential Equations, held June 11-15, 2012, in El Escorial, Madrid, Spain. Included in this volume is the written version of the mini-course given by Jonathan Bennett on Aspects of Multilinear Harmonic Analysis Related to Transversality. Also included, among other papers, is a paper by Emmanouil Milakis, Jill Pipher, and Tatiana Toro, which reflects and extends the ideas presented in the mini-course on Analysis on Non-smooth Domains delivered at the conference by Tatiana Toro. The topics of the contributed lectures cover a wide range of the field of Harmonic Analysis and Partial Differential Equations and illustrate the fruitful interplay between the two subfields.
The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition. Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and improved references.
For the second time, a Summer School in Analysis and Mathematical Physics took place at the Universidad Nacional Autonoma de Mexico in Cuernavaca. The purpose of the schools is to provide a bridge from standard graduate courses in mathematics to current research topics, particularly in analysis. The lectures are given by internationally recognized specialists in the fields. The topics covered in this Second Summer School include harmonic analysis, complex analysis, pseudodifferential operators, the mathematics of quantum chaos, and non-linear analysis.
None
The Six Pillars of Calculus: Business Edition is a conceptual and practical introduction to differential and integral calculus for use in a one- or two-semester course. By boiling calculus down to six common-sense ideas, the text invites students to make calculus an integral part of how they view the world. Each pillar is introduced by tackling and solving a challenging, realistic problem. This engaging process of discovery encourages students to wrestle with the material and understand the reasoning behind the techniques they are learning—to focus on when and why to use the tools of calculus, not just on how to apply formulas. Modeling and differential equations are front and center. Solu...
This book is an elementary self-contained introduction to some constructions of representation theory and related topics of differential geometry and analysis. Topics covered include the theory of various Fourier-like integral operators such as Segal-Bargmann transforms, Gaussian integral operators in $L^2$ and in the Fock space, integral operators with theta-kernels, the geometry of real and $p$-adic classical groups and symmetric spaces. The heart of the book is the Weil representation of the symplectic group (real and complex realizations, relations with theta-functions and modular forms, $p$-adic and adelic constructions) and representations in Hilbert spaces of holomorphic functions of several complex variables. This book is addressed to graduate students and researchers in representation theory, differential geometry, and operator theory. Prerequisites are standard university courses in linear algebra, functional analysis, and complex analysis.
An exploration of the hidden human, emotional, and social dimensions of mathematics Mathematics is often thought of as the coldest expression of pure reason. But few subjects provoke hotter emotions—and inspire more love and hatred—than mathematics. And although math is frequently idealized as floating above the messiness of human life, its story is nothing if not human; often, it is all too human. Loving and Hating Mathematics is about the hidden human, emotional, and social forces that shape mathematics and affect the experiences of students and mathematicians. Written in a lively, accessible style, and filled with gripping stories and anecdotes, Loving and Hating Mathematics brings ho...
The collection covers a broad spectrum of topics, including: wavelet analysis, Haenkel operators, multimeasure theory, the boundary behavior of the Bergman kernel, interpolation theory, and Cotlar's Lemma on almost orthogonality in the context of L[superscript p] spaces and more...
This volume contains papers selected from the Wavelet Analysis and Multiresolution Methods Session of the AMS meeting held at the University of Illinois at Urbana-Champaign. The contributions cover: construction, analysis, computation and application of multiwavelets; scaling vectors; nonhomogenous refinement; mulivariate orthogonal and biorthogonal wavelets; and other related topics.