You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
***VERKAUFSKATEGORIE*** 1 e This textbook covers the core subjects of nuclear engineering. Developed to meet the needs of today's students and nuclear power plant operators, the text establishes a framework for the various areas of knowledge that comprise the field and explains rather than just defines the relevant physical phenomena. For today's engineer the principal analytical design tool is the personal computer. The text takes advantage of this recent development. PC programs are provided which either expand the computational range accessible to the student, or serve to illustrate the relevant physical phenomena. Some of the included programs are simplified versions of computational procedures used in the field and can be used as training tool for design calculations. The text devotes special attention to subjects which have an impact on the safe operation of nuclear power reactors. This includes the design of safety optimized core configurations, the physical mechanisms underlying the various reactivity coefficients, and the calibration procedures for control rods. A final chapter is devoted to the licensing and safety evaluation of power reactors.
Nuclear criticality safety is the prevention of nuclear chain reactions in fissile materials outside of reactors. This book presents the underlying principles of nuclear criticality safety theory along with descriptions of the principal methods currently used and their in-plant applications. Exercises are provided at the end of each chapter to increase understanding of the text.
None
This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: • The slow...
Have you ever wondered how a nuclear power station works? This lively book will answer that question. It’ll take you on a journey from the science behind nuclear reactors, through their start-up, operation and shutdown. Along the way it covers a bit of the engineering, reactor history, different kinds of reactors and what can go wrong with them. Much of this is seen from the viewpoint of a trainee operator on a Pressurised Water Reactor - the most common type of nuclear reactor in the world. Colin Tucker has spent the last thirty years keeping reactors safe. Join him on a tour that is the next best thing to driving a nuclear reactor yourself!
This open access book is a unique compilation of experimental benchmark analyses of the accelerator-driven system (ADS) at the Kyoto University Critical Assembly (KUCA) on the most recent advances in the development of computational methods. It is devoted especially to nuclear engineers and scientists. Readers will find a detailed description of advanced measurement techniques and calculation methodologies for the ADS with 14 MeV neutrons and high-energy neutrons (with combined use of 100 MeV protons and Pb-Bi target) at KUCA. Additionally, experimental results of nuclear transmutation of minor actinides by ADS and at a critical state are included. Readers also have access to benchmarks of specific ADS experiments with raw data in the Appendix. The book is a valuable resource for the ADS experiments at KUCA which are globally recognized as both static and kinetic studies from the point of view of fundamental research.
This book provides a concise but rigorous appraisal about the future of nuclear power and the presumed nuclear renaissance. It does so by assessing the technical, economic, environmental, political, and social risks related to all aspects of the nuclear fuel cycle, from uranium mills and mines to nuclear reactors and spent fuel storage facilities. In each case, the book argues that the costs of nuclear power significantly outweigh its benefits. It concludes by calling for investments in renewable energy and energy efficiency as a better path towards an affordable, secure, and socially acceptable future.The prospect of a global nuclear renaissance could change the way that energy is produced and used the world over. Sovacool takes a hard look at who would benefit — mostly energy companies and manufacturers — and who would suffer — mostly taxpayers, those living near nuclear facilities, and electricity customers. This book is a must-read for anyone even remotely concerned about a sustainable energy future, and also for those with a specific interest in modern nuclear power plants.
None
This book covers the entire spectrum of the science and technology of nuclear reactor systems, from underlying physics, to next generation system applications and beyond. Beginning with neutron physics background and modeling of transport and diffusion, this self-contained learning tool progresses step-by-step to discussions of reactor kinetics, dynamics, and stability that will be invaluable to anyone with a college-level mathematics background wishing to develop an understanding of nuclear power. From fuels and reactions to full systems and plants, the author provides a clear picture of how nuclear energy works, how it can be optimized for safety and efficiency, and why it is important to the future.
On 17 June 1997 a physicist working as a senior technician at the Nuclear Centre, Sarov, in the Russian Federation, was severely exposed as a result of a criticality accident with an assembly of highly enriched uranium. This is the first report that the IAEA has published on a criticality accident.