Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Bandit Algorithms
  • Language: en
  • Pages: 537

Bandit Algorithms

A comprehensive and rigorous introduction for graduate students and researchers, with applications in sequential decision-making problems.

Algorithms for Reinforcement Learning
  • Language: en
  • Pages: 89

Algorithms for Reinforcement Learning

Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of ...

Algorithms for Reinforcement Learning
  • Language: en
  • Pages: 103

Algorithms for Reinforcement Learning

Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of ...

Bandit Algorithms
  • Language: en
  • Pages: 538

Bandit Algorithms

Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer science, engineering, statistics, applied mathematics and economics. Linear bandits receive special attention as one of the most useful models in applications, while other chapters are dedicated to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure exploration. The book ends with a peek into the world beyond bandits with an introduction to partial monitoring and learning in Markov decision processes.

Reinforcement Learning, second edition
  • Language: en
  • Pages: 549

Reinforcement Learning, second edition

  • Type: Book
  • -
  • Published: 2018-11-13
  • -
  • Publisher: MIT Press

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the fir...

Advances in Artificial Intelligence
  • Language: en
  • Pages: 373

Advances in Artificial Intelligence

  • Type: Book
  • -
  • Published: 2015-04-28
  • -
  • Publisher: Springer

This book constitutes the refereed proceedings of the 28th Canadian Conference on Artificial Intelligence, Canadian AI 2015, held in Halifax, Nova Scotia, Canada, in June 2015.The 15 regular papers and 12 short papers presented together with 8 papers from the Graduate Student Symposium were carefully reviewed and selected from 81 submissions. The papers are organized in topical sections such as agents, uncertainty and games; AI applications; NLP, text and social media mining; data mining and machine learning.

Constrained Markov Decision Processes
  • Language: en
  • Pages: 256

Constrained Markov Decision Processes

  • Type: Book
  • -
  • Published: 2021-12-17
  • -
  • Publisher: Routledge

This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other.

Explainable Artificial Intelligence for Intelligent Transportation Systems
  • Language: en
  • Pages: 286

Explainable Artificial Intelligence for Intelligent Transportation Systems

  • Type: Book
  • -
  • Published: 2023-10-20
  • -
  • Publisher: CRC Press

Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amenable to human scrutiny and can hardly be explained. This can be very problematic, especially for systems of a safety-critical nature such as transportation systems. Explainable AI (XAI) methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS. FEATURES: Provides the necessary background for newcomers to the field (both academics and interested practitioners) Presents a timely snapshot of explainable and interpretable models in ITS applications Discusses ethical, societal, and legal implications of adopting XAI in the context of ITS Identifies future research directions and open problems

Computer Vision - ECCV 2004
  • Language: en
  • Pages: 659

Computer Vision - ECCV 2004

  • Type: Book
  • -
  • Published: 2004-05-10
  • -
  • Publisher: Springer

Welcome to the proceedings of the 8th European Conference on Computer - sion! Following a very successful ECCV 2002, the response to our call for papers was almost equally strong – 555 papers were submitted. We accepted 41 papers for oral and 149 papers for poster presentation. Several innovations were introduced into the review process. First, the n- ber of program committee members was increased to reduce their review load. We managed to assign to program committee members no more than 12 papers. Second, we adopted a paper ranking system. Program committee members were asked to rank all the papers assigned to them, even those that were reviewed by additional reviewers. Third, we allowed ...

Deep Learning Approach for Natural Language Processing, Speech, and Computer Vision
  • Language: en
  • Pages: 251

Deep Learning Approach for Natural Language Processing, Speech, and Computer Vision

  • Type: Book
  • -
  • Published: 2023-05-22
  • -
  • Publisher: CRC Press

Deep Learning Approach for Natural Language Processing, Speech, and Computer Vision provides an overview of general deep learning methodology and its applications of natural language processing (NLP), speech, and computer vision tasks. It simplifies and presents the concepts of deep learning in a comprehensive manner, with suitable, full-fledged examples of deep learning models, with an aim to bridge the gap between the theoretical and the applications using case studies with code, experiments, and supporting analysis. Features: Covers latest developments in deep learning techniques as applied to audio analysis, computer vision, and natural language processing. Introduces contemporary applications of deep learning techniques as applied to audio, textual, and visual processing. Discovers deep learning frameworks and libraries for NLP, speech, and computer vision in Python. Gives insights into using the tools and libraries in Python for real-world applications. Provides easily accessible tutorials and real-world case studies with code to provide hands-on experience. This book is aimed at researchers and graduate students in computer engineering, image, speech, and text processing.