You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The volume in hand contains a selection from the numerous contributions dedicated to Professor Dr. Gottfried Köthe on the occasion of his 60th birthday. This selection only takes into consideration the papers on Functional Analysis as far as they have reached us in time to be included in the volume. All of these papers have been published in [the journal] "Mathematische Annalen", volume 162.
The goal of these lectures is to present an introduction to the geometric topology of the Hilbert cube Q and separable metric manifolds modeled on Q, which are called here Hilbert cube manifolds or Q-manifolds. In the past ten years there has been a great deal of research on Q and Q-manifolds which is scattered throughout several papers in the literature. The author presents here a self-contained treatment of only a few of these results in the hope that it will stimulate further interest in this area. No new material is presented here and no attempt has been made to be complete. For example, the author has omitted the important theorem of Schori-West stating that the hyperspace of closed sub...
The fame of the Polish school at Lvov rests with the diverse and fundamental contributions of Polish mathematicians working there during the interwar years. In particular, despite material hardship and without a notable mathematical tradition, the school made major contributions to what is now called functional analysis. The results and names of Banach, Kac, Kuratowski, Mazur, Nikodym, Orlicz, Schauder, Sierpiński, Steinhaus, and Ulam, among others, now appear in all the standard textbooks. The vibrant joie de vivre and singular ambience of Lvov's once scintillating social scene are evocatively recaptured in personal recollections. The heyday of the famous Scottish Café--unquestionably the...
None
This monograph presents an up-to-date panorama of the different techniques and results in the large field of renorming in Banach spaces and its applications. The reader will find a self-contained exposition of the basics on convexity and differentiability, the classical results in building equivalent norms with useful properties, and the evolution of the subject from its origin to the present days. Emphasis is done on the main ideas and their connections. The book covers several goals. First, a substantial part of it can be used as a text for graduate and other advanced courses in the geometry of Banach spaces, presenting results together with proofs, remarks and developments in a structured...
Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.
This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.
Alfred Tarski (1901–1983) was a renowned Polish/American mathematician, a giant of the twentieth century, who helped establish the foundations of geometry, set theory, model theory, algebraic logic and universal algebra. Throughout his career, he taught mathematics and logic at universities and sometimes in secondary schools. Many of his writings before 1939 were in Polish and remained inaccessible to most mathematicians and historians until now. This self-contained book focuses on Tarski’s early contributions to geometry and mathematics education, including the famous Banach–Tarski paradoxical decomposition of a sphere as well as high-school mathematical topics and pedagogy. These the...