You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In 2010, French mathematician Cédric Villani received the Fields Medal, the most coveted prize in mathematics, in recognition of a proof which he devised with his close collaborator Clément Mouhot to explain one of the most surprising theories in classical physics. Birth of aTheorem is Villani's own account of the years leading up to the award. It invites readers inside the mind of a great mathematician as he wrestles with the most important work of his career. But you don't have to understand nonlinear Landau damping to love Birth of aTheorem. It doesn't simplify or overexplain; rather, it invites readers into collaboration. Villani's diaries, emails, and musings enmesh you in the process of discovery. You join him in unproductive lulls and late-night breakthroughs. You're privy to the dining-hall conversations at the world's greatest research institutions. Villani shares his favorite songs, his love of manga, and the imaginative stories he tells his children. In mathematics, as in any creative work, it is the thinker's whole life that propels discovery—and with Birth of aTheorem, Cédric Villani welcomes you into his.
This is the first comprehensive introduction to the theory of mass transportation with its many—and sometimes unexpected—applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook. In 1781, Gaspard Monge defined the problem of “optimal transportation” (or the transferring of mass with the least possible amount of work), with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection the...
At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book’s value as a most welcome reference text on this subject.
âeoeThis man could plainly do for mathematics what Brian Cox has done for physicsâe âe" Sunday Times How does a genius see the world? Where and how does inspiration strike? Cédric Villani takes us on a mesmerising adventure as he wrestles with the Boltzmann equation âe" a new theorem that will eventually win him the most coveted prize in mathematics and a place in the mathematical history books. Along the way he encounters obstacles and setbacks, losses of faith and even brushes with madness. His story is one of courage and partnership, doubt and anxiety, elation and despair. Of ordinary family life blurring with the abstract world of mathematical physics, of theories and equations that haunt your dreams and seeking the elusive inspiration found only in a locked, darkened room. Blending science with history, biography with myth, Villani conjures up an inimitable cast: the omnipresent Einstein, mad genius Kurt Godel, and Villaniâe(tm)s personal hero, John Nash. Step inside the magical world of Cédric Villaniâe¦
Prime Obsession taught us not to be afraid to put the math in a math book. Unknown Quantity heeds the lesson well. So grab your graphing calculators, slip out the slide rules, and buckle up! John Derbyshire is introducing us to algebra through the ages-and it promises to be just what his die-hard fans have been waiting for. "Here is the story of algebra." With this deceptively simple introduction, we begin our journey. Flanked by formulae, shadowed by roots and radicals, escorted by an expert who navigates unerringly on our behalf, we are guaranteed safe passage through even the most treacherous mathematical terrain. Our first encounter with algebraic arithmetic takes us back 38 centuries to...
In the words of the great poet Senghor, Cedric Villani makes the bold claim that Mathematics is the Poetry of Science. Perhaps paradoxical to some, both disciplines are concerned with describing the world around us, understanding its parts, and using this knowledge to create something profound. World-renowned mathematician and Fields Medallist Cedric Villani explores this analogy in this engaging and intelligent text, and shows how mathematics, one of the world's few universal languages, holds deep similarities to the literary genre. A great lover of poetry, he insists that the two are intrinsically linked in their aim of both tackling the complexities of our reality as well as distancing us from it so that we may better appreciate its beauty. In a more light-hearted and concise approach than his more theoretical academic works, this book represents one of Villani's attempts to communicate his love of mathematics to a wider audience, drawing daring parallels between two universes that meet in their aspiration of the sublime.
Featuring updated versions of two research courses held at the Centre Émile Borel in Paris in 2001, this book describes the mathematical theory of convergence to equilibrium for the Boltzmann equation and its relation to various problems and fields. It also discusses four conjectures for the kinetic behavior of the hard sphere models and formulates four stochastic variations of this model, also reviewing known results for these.
An insightful reflection on the mathematical soul What do pure mathematicians do, and why do they do it? Looking beyond the conventional answers—for the sake of truth, beauty, and practical applications—this book offers an eclectic panorama of the lives and values and hopes and fears of mathematicians in the twenty-first century, assembling material from a startlingly diverse assortment of scholarly, journalistic, and pop culture sources. Drawing on his personal experiences and obsessions as well as the thoughts and opinions of mathematicians from Archimedes and Omar Khayyám to such contemporary giants as Alexander Grothendieck and Robert Langlands, Michael Harris reveals the charisma a...
This book challenges the views put forward by Pierre Cartier, one of the anchors of the famous Bourbaki group, and Cédric Villani, one of the most brilliant mathematicians of his generation, who received the Fields Medal in 2010. Jean Dhombres, mathematician and science historian, and Gerhard Heinzmann, philosopher of science and also a specialist in mathematics engage in a fruitful dialogue with the two mathematicians, prompting readers to reflect on mathematical activity and its social consequences in history as well as in the modern world. Cédric Villani’s popular success proves once again that a common awareness has developed, albeit in a very confused way, of the major role of mathe...
This volume collects the notes of the CIME course "Nonlinear PDE’s and applications" held in Cetraro (Italy) on June 23–28, 2008. It consists of four series of lectures, delivered by Stefano Bianchini (SISSA, Trieste), Eric A. Carlen (Rutgers University), Alexander Mielke (WIAS, Berlin), and Cédric Villani (Ecole Normale Superieure de Lyon). They presented a broad overview of far-reaching findings and exciting new developments concerning, in particular, optimal transport theory, nonlinear evolution equations, functional inequalities, and differential geometry. A sampling of the main topics considered here includes optimal transport, Hamilton-Jacobi equations, Riemannian geometry, and their links with sharp geometric/functional inequalities, variational methods for studying nonlinear evolution equations and their scaling properties, and the metric/energetic theory of gradient flows and of rate-independent evolution problems. The book explores the fundamental connections between all of these topics and points to new research directions in contributions by leading experts in these fields.