You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
It is well recognized that blood could be the optimal site for evaluating cancer, allowing easy and repeated access for determining prognosis, establishing molecular targets, evaluating the efficacy of therapy, detecting the earliest signs of recurrence, and even detecting cancer at its earliest and most curable stages. The analysis of cancer through blood samples is now known as the liquid biopsy and has been a rich source of research and clinical application. There has been an explosion of interest and progress in liquid biopsy technologies since the first edition of this book. The second edition will expand its focus to now include not only circulating tumor cells (CTC), but also other em...
Progress in Nucleic Acid Research and Molecular Biology
An essential resource for all scientists researching cellular responses to DNA damage. • Introduces important new material reflective of the major changes and developments that have occurred in the field over the last decade. • Discussed the field within a strong historical framework, and all aspects of biological responses to DNA damage are detailed. • Provides information on covering sources and consequences of DNA damage; correcting altered bases in DNA: DNA repair; DNA damage tolerance and mutagenesis; regulatory responses to DNA damage in eukaryotes; and disease states associated with defective biological responses to DNA damage.
This book provides a timely, graduate level introduction to the fast-paced area of genomics and clinical diagnostic technologies and introduces the concept of applications based on this area.
The analysis of circulating tumor cells (CTCs) as a real-time liquid biopsy approach can be used to obtain new insights into metastasis biology, and as companion diagnostics to improve the stratification of therapies and to obtain insights into the therapy-induced selection of cancer cells. In this book, we will cover all the different facets of CTCs to assemble a huge corpus of knowledge on cancer dissemination: technologies for their enrichment, detection, and characterization; their analysis at the single-cell level; their journey as CTC microemboli; their clinical relevance; their biology with the epithelial-to-mesenchymal transition (EMT); their stem-cell properties; their potential to initiate metastasis at distant sites; their ex vivo expansion; and their escape from the immune system.
This book describes the principles and the application of the existing molecular methodology for the detection of early cancer. Discussion focuses on the molecular changes characterizing preneoplastic lesions; molecular targets for early detection; validation of molecular targets; and new diagnostic technology for early detection. The advantages of molecular detection over current methods are examined, as well as the importance of identifying and characterizing preneoplastic lesions. In addition to the uses of highly specific molecular probes to detect early cancer, this book demonstrates the many ways in which molecular markers serve oncology. While meeting pressing needs in the practice of medicine, molecular detection of early cancer scientifically necessitates a confrontation with the biology of cancer, such as the genetic determinants of progression, regression, dormancy, and invasion. This work not only discusses the diagnostic value of these molecular methods but views their practical benefits against a background of conventional morphology.
DNA repair is a rapidly advancing field in biology and these systems represent a major defense mechanism against environmental and intracellular damaging agents such as sunlight, ionizing radiation, and reactive oxygen species. With contributions from eminent researchers, this book explores the basics and current trends in this critical field. Topics include carcinogenesis as a predictive and/or prognostic biomarker for cancer therapy, nucleotide excision repair, and tumor genetics and personalized medicine. The contributions provide essential information to scientists, pharmaceutical investigators, and clinicians interested in cancer therapy.
The notion of matching diet with an individual's genetic makeup is transforming the way the public views nutrition as a means of managing health and preventing disease. To fulfill the promise of nutritional genomics, researchers are beginning to reconcile the diverse properties of dietary factors with our current knowledge of genome structure and g
This book details polysaccharides and other important biomacromolecules covering their source, production, structures, properties, and current and potential application in the fields of biotechnology and medicine. It includes a systematic discussion on the general strategies of isolation, separation and characterization of polysaccharides and proteins. Subsequent chapters are devoted to polysaccharides obtained from various sources, including botanical, algal, animal and microbial. In the area of botanical polysaccharides, separate chapters are devoted to the sources, structure, properties and medical applications of cellulose and its derivatives, starch and its derivatives, pectins, and exu...