You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Covering recent developments in the theory of non-equilibrium thermodynamics and its applications, this title is aimed at a predominantly, but not exclusively, academic audience of practitioners of thermodynamics and energy conversion.
This most comprehensive and unrivaled compendium in the field provides an up-to-date account of the chemistry of solids, nanoparticles and hybrid materials. Following a valuable introductory chapter reviewing important synthesis techniques, the handbook presents a series of contributions by about 150 international leading experts -- the "Who's Who" of solid state science. Clearly structured, in six volumes it collates the knowledge available on solid state chemistry, starting from the synthesis, and modern methods of structure determination. Understanding and measuring the physical properties of bulk solids and the theoretical basis of modern computational treatments of solids are given ample space, as are such modern trends as nanoparticles, surface properties and heterogeneous catalysis. Emphasis is placed throughout not only on the design and structure of solids but also on practical applications of these novel materials in real chemical situations.
Polymers are substances made of macromolecules formed by thousands of atoms organized in one (homopolymers) or more (copolymers) groups that repeat themselves to form linear or branched chains, or lattice structures. The concept of polymer traces back to the years 1920's and is one of the most significant ideas of last century. It has given great impulse to indus try but also to fundamental research, including life sciences. Macromolecules are made of sm all molecules known as monomers. The process that brings monomers into polymers is known as polymerization. A fundamental contri bution to the industrial production of polymers, particularly polypropylene and polyethylene, is due to the Nobe...
Atmospheric particles are ubiquitous in the atmosphere: they form the seeds for cloud droplets and they form haze layers, blocking out incoming radiation and contributing to a partial cooling of our climate. They also contribute to poor air quality and health impacts. A large fraction of aerosols are formed from nucleation processes – that is a phase transition from vapour to liquid or solid particles. Examples are the formation of stable clusters about 1 nm in size from molecular collisions and these in turn can grow into larger (100 nm or more) haze particles via condensation to the formation of ice crystals in mixed phase or cold clouds. This book brings together the leading experts fro...
This new publication brings together contemporary approaches for designing nanostructures that employ naturally derived self-assembling motifs as synthetic platforms.
Can hydrogen and electricity supply all of the world's energy needs? Handbook of Hydrogen Energy thoroughly explores the notion of a hydrogen economy and addresses this question. The handbook considers hydrogen and electricity as a permanent energy system and provides factual information based on science. The text focuses on a large cross section o
Emerging Topics in Physical Virology is a state-of-the-art account of recent advances in the experimental analysis and modeling of structure, function and dynamics of viruses. It is the first interdisciplinary book that integrates a review of relevant experimental techniques, such as cryo-electron microscopy, atomic force microscopy and mass spectrometry with the latest results on the biophysical and mathematical modeling of viruses. The book comprehensively covers the structure and physical properties of the protein envelopes that encapsulate and hence protect the delicate viral genome, their assembly and disassembly, the organization of the viral genome, infection, evolution, as well as applications of viruses in Biomedical Nanotechnology. It is an essential primer for scientists working in all aspects of virology, including the increasing use of viruses and virus-like particles in bio- and nano-technology. Its review style makes it moreover suitable for non-experts as an introduction into this exciting research area./a
The cost of drug development is increasing, and investment returns are decreasing. The number of drugs approved by FDA is in decline in terms of the number of new molecular entities (NMEs). Amongst the reasons noted for this are the adverse side effects and reduced efficiency of many of the potential compounds. This is a problem both for the pharmaceutical industry and for those suffering from diseases for which there are no or few available treatments. Advances in computational chemistry, computer science, structural biology and molecular biology have all contributed to improved drug design strategies and reduced the time taken for drug discovery. By interfacing cheminformatics and bioinfor...
The book describes in a simple and practical way what non-equilibrium thermodynamics is and how it can add to engineering fields. It explains how to describe proper equations of transport, more precise than used so far, and how to use them to understand the waste of energy resources in central unit processes in the industry. It introduces the entropy balance as an additional equation to use, to create consistent thermodynamic models, and a systematic method for minimizing energy losses that are connected with transport of heat, mass, charge, momentum and chemical reactions.
Chemical Thermodynamics for Industry presents the latest developments in applied thermodynamics and highlights the role of thermodynamics in the chemical industry. Written by leading experts in the field, Chemical Thermodynamics for Industry covers the latest developments in traditional areas such as calorimetry, microcalorimetry, transport properties, crystallization, adsorption, electrolyte systems and transport fuels, It highlights newly established areas such as multiphase modeling, reactive distillation, non-equilibrium thermodynamics and spectro-calorimetry. It also explores new ways of treating old technologies as well as new and potentially important areas such as ionic liquids, new materials, ab-initia quantum chemistry, nano-particles, polymer recycling, clathrates and the economic value of applied thermodynamics. This book is aimed not only at those working in a specific area of chemical thermodynamics but also at the general chemist, the prospective researcher and those involved in funding chemical research.