You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Duflo isomorphism first appeared in Lie theory and representation theory. It is an isomorphism between invariant polynomials of a Lie algebra and the center of its universal enveloping algebra, generalizing the pioneering work of Harish-Chandra on semi-simple Lie algebras. Kontsevich later refined Duflo's result in the framework of deformation quantization and also observed that there is a similar isomorphism between Dolbeault cohomology of holomorphic polyvector fields on a complex manifold and its Hochschild cohomology. This book, which arose from a series of lectures by Damien Calaque at ETH, derives these two isomorphisms from a Duflo-type result for $Q$-manifolds. All notions mentio...
This book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics— such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics— and in theoretical physics such as quantum field theory and string theory. These higher algebraic structures provide a common language essential in the study of deformation quantization, theory of algebroids and groupoids, symplectic field theory, and much more. Each contribution in this volume expands on the ideas of Gerstenhaber and Stasheff. The volume is intended for post-graduate students, mathematical and theoretical physicists, and mathematicians interested in higher structures.
Supersymmetry is a highly active area of considerable interest among physicists and mathematicians. It is not only fascinating in its own right, but there is also indication that it plays a fundamental role in the physics of elementary particles and gravitation. The purpose of the book is to lay down the foundations of the subject, providing the reader with a comprehensive introduction to the language and techniques, as well as detailed proofs and many clarifying examples. This book is aimed ideally at second-year graduate students. After the first three introductory chapters, the text is divided into two parts: the theory of smooth supermanifolds and Lie supergroups, including the Frobenius theorem, and the theory of algebraic superschemes and supergroups. There are three appendices. The first introduces Lie superalgebras and representations of classical Lie superalgebras, the second collects some relevant facts on categories, sheafification of functors and commutative algebra, and the third explains the notion of Frechet space in the super context.
This book deals first with Haar bases, Faber bases and Faber frames for weighted function spaces on the real line and the plane. It extends results in the author's book, ``Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration'' (EMS, 2010), from unweighted spaces (preferably in cubes) to weighted spaces. The obtained assertions are used to study sampling and numerical integration in weighted spaces on the real line and weighted spaces with dominating mixed smoothness in the plane. A short chapter deals with the discrepancy for spaces on intervals.
The notion of elation generalized quadrangle is a natural generalization to the theory of generalized quadrangles of the important notion of translation planes in the theory of projective planes. Almost any known class of finite generalized quadrangles can be constructed from a suitable class of elation quadrangles. In this book the author considers several aspects of the theory of elation generalized quadrangles. Special attention is given to local Moufang conditions on the foundational level, exploring, for instance, Knarr's question from the 1990s concerning the very notion of elation quadrangles. All the known results on Kantor's prime power conjecture for finite elation quadrangles are ...
This book deals with homogeneous function spaces of Besov-Sobolev type within the framework of tempered distributions in Euclidean $n$-space based on Gauss-Weierstrass semi-groups. Related Fourier-analytical descriptions and characterizations in terms of derivatives and differences are incorporated after as so-called domestic norms. This approach avoids the usual ambiguities modulo polynomials when homogeneous function spaces are considered in the context of homogeneous tempered distributions. These notes are addressed to graduate students and mathematicians having a working knowledge of basic elements of the theory of function spaces, especially of Besov-Sobolev type. In particular, the book might be of interest for researchers dealing with (nonlinear) heat and Navier-Stokes equations in homogeneous function spaces.
EMAlgebra, Arithmetic, and Geometry: In Honor of Yu. I. ManinEM consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics.
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving...
"July 2011, volume 212, number 996 (first of 4 numbers)."
Homotopy Quantum Field Theory (HQFT) is a branch of Topological Quantum Field Theory founded by E. Witten and M. Atiyah. It applies ideas from theoretical physics to study principal bundles over manifolds and, more generally, homotopy classes of maps from manifolds to a fixed target space. This book is the first systematic exposition of Homotopy Quantum Field Theory. It starts with a formal definition of an HQFT and provides examples of HQFTs in all dimensions. The main body of the text is focused on $2$-dimensional and $3$-dimensional HQFTs. A study of these HQFTs leads to new algebraic objects: crossed Frobenius group-algebras, crossed ribbon group-categories, and Hopf group-coalgebras. Th...