Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes
  • Language: en
  • Pages: 225

Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes

Semi-Infinite Geometry is a theory of "doubly infinite-dimensional" geometric or topological objects. In this book the author explains what should be meant by an algebraic variety of semi-infinite nature. Then he applies the framework of semiderived categories, suggested in his previous monograph titled Homological Algebra of Semimodules and Semicontramodules, (Birkhäuser, 2010), to the study of semi-infinite algebraic varieties. Quasi-coherent torsion sheaves and flat pro-quasi-coherent pro-sheaves on ind-schemes are discussed at length in this book, making it suitable for use as an introduction to the theory of quasi-coherent sheaves on ind-schemes. The main output of the homological theo...

Representation Theory and Beyond
  • Language: en
  • Pages: 298

Representation Theory and Beyond

This volume contains the proceedings of the Workshop and 18th International Conference on Representations of Algebras (ICRA 2018) held from August 8–17, 2018, in Prague, Czech Republic. It presents several themes of contemporary representation theory together with some new tools, such as stable ∞ ∞-categories, stable derivators, and contramodules. In the first part, expanded lecture notes of four courses delivered at the workshop are presented, covering the representation theory of finite sets with correspondences, geometric theory of quiver Grassmannians, recent applications of contramodules to tilting theory, as well as symmetries in the representation theory over an abstract stable homotopy theory. The second part consists of six more-advanced papers based on plenary talks of the conference, presenting selected topics from contemporary representation theory: recollements and purity, maximal green sequences, cohomological Hall algebras, Hochschild cohomology of associative algebras, cohomology of local selfinjective algebras, and the higher Auslander–Reiten theory studied via homotopy theory.

Quadratic Algebras
  • Language: en
  • Pages: 176

Quadratic Algebras

This book introduces recent developments in the study of algebras defined by quadratic relations. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, non commutative geometry, $K$-theory, number theory, and non commutative linear algebra.The authors give a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincare-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes. The book can be used by graduate students and researchers working in algebra and any of the above-mentioned areas of mathematics.

Relative Nonhomogeneous Koszul Duality
  • Language: en
  • Pages: 303

Relative Nonhomogeneous Koszul Duality

This research monograph develops the theory of relative nonhomogeneous Koszul duality. Koszul duality is a fundamental phenomenon in homological algebra and related areas of mathematics, such as algebraic topology, algebraic geometry, and representation theory. Koszul duality is a popular subject of contemporary research. This book, written by one of the world's leading experts in the area, includes the homogeneous and nonhomogeneous quadratic duality theory over a nonsemisimple, noncommutative base ring, the Poincare–Birkhoff–Witt theorem generalized to this context, and triangulated equivalences between suitable exotic derived categories of modules, curved DG comodules, and curved DG contramodules. The thematic example, meaning the classical duality between the ring of differential operators and the de Rham DG algebra of differential forms, involves some of the most important objects of study in the contemporary algebraic and differential geometry. For the first time in the history of Koszul duality the derived D-\Omega duality is included into a general framework. Examples highly relevant for algebraic and differential geometry are discussed in detail.

Two Kinds of Derived Categories, Koszul Duality, and Comodule-Contramodule Correspondence
  • Language: en
  • Pages: 146

Two Kinds of Derived Categories, Koszul Duality, and Comodule-Contramodule Correspondence

"July 2011, volume 212, number 996 (first of 4 numbers)."

Homological Algebra of Semimodules and Semicontramodules
  • Language: en
  • Pages: 364

Homological Algebra of Semimodules and Semicontramodules

This book provides comprehensive coverage on semi-infinite homology and cohomology of associative algebraic structures. It features rich representation-theoretic and algebro-geometric examples and applications.

Representations of Algebras, Geometry and Physics
  • Language: en
  • Pages: 241

Representations of Algebras, Geometry and Physics

This volume contains selected expository lectures delivered at the 2018 Maurice Auslander Distinguished Lectures and International Conference, held April 25–30, 2018, at the Woods Hole Oceanographic Institute, Woods Hole, MA. Reflecting recent developments in modern representation theory of algebras, the selected topics include an introduction to a new class of quiver algebras on surfaces, called “geodesic ghor algebras”, a detailed presentation of Feynman categories from a representation-theoretic viewpoint, connections between representations of quivers and the structure theory of Coxeter groups, powerful new applications of approximable triangulated categories, new results on the heart of a t t-structure, and an introduction to methods of constructive category theory.

Homotopy of Operads and Grothendieck-Teichmuller Groups
  • Language: en
  • Pages: 743

Homotopy of Operads and Grothendieck-Teichmuller Groups

The ultimate goal of this book is to explain that the Grothendieck–Teichmüller group, as defined by Drinfeld in quantum group theory, has a topological interpretation as a group of homotopy automorphisms associated to the little 2-disc operad. To establish this result, the applications of methods of algebraic topology to operads must be developed. This volume is devoted primarily to this subject, with the main objective of developing a rational homotopy theory for operads. The book starts with a comprehensive review of the general theory of model categories and of general methods of homotopy theory. The definition of the Sullivan model for the rational homotopy of spaces is revisited, and...

The Invariant Theory of Matrices
  • Language: en
  • Pages: 162

The Invariant Theory of Matrices

This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving (1) the first fundamental theorem that describes a set of generators in the ring of invariants, and (2) the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book.

Vector Bundles on Degenerations of Elliptic Curves and Yang-Baxter Equations
  • Language: en
  • Pages: 144

Vector Bundles on Degenerations of Elliptic Curves and Yang-Baxter Equations

"November 2012, volume 220, number 1035 (third of 4 numbers)."