You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents the perspectives of nanotechnology educators from around the world. Experts present the pressing challenges of teaching nanoscience and engineering to students in all levels of education, postsecondary and informal environments. The book was inspired by the 2014 NSF workshop for Nanoscience and Engineering Education. Since nanotechnology is a relatively new field, authors present recommendations for designing nanotechnology education programs. The chapters describe methods to teach specific topics, such as probe microscopy, size and scale, and nanomaterial safety, in classrooms around the world. Other chapters describe the ways that organizations like NNIN and the NISE Network have influenced informal nanotechnology education. Information technology plays a growing role in all types of education and several chapters are devoted to describing ways how educators can use online curricula for teaching nanotechnology to students from preschool to graduate school.
Based on the deliberations of a high-level international conference, this report summarizes the presentations of an exceptional group of experts, convened by Intel's Chairman Emeritus Gordon Moore and SEMATECH's Chairman Emeritus William Spencer. The report documents the critical technological challenges facing this key industry and the rapid growth in government-industry partnerships overseas to support centers of semiconductor research and production in national economies. Importantly, the report provides a series of recommendations designed to strengthen U.S. research in disciplines supporting the continued growth of semiconductor industry, an industry which has made major contributions to the remarkable increases in productivity in the U.S. economy.
Emerging Nanotechnologies: Test, Defect Tolerance and Reliability covers various technologies that have been developing over the last decades such as chemically assembled electronic nanotechnology, Quantum-dot Cellular Automata (QCA), and nanowires and carbon nanotubes. Each of these technologies offers various advantages and disadvantages. Some suffer from high power, some work in very low temperatures and some others need indeterministic bottom-up assembly. These emerging technologies are not considered as a direct replacement for CMOS technology and may require a completely new architecture to achieve their functionality. Emerging Nanotechnologies: Test, Defect Tolerance and Reliability brings all of these issues together in one place for readers and researchers who are interested in this rapidly changing field.
Since 1959, the National Research Council (NRC), at the request of the National Institute of Standards and Technology (NIST), has annually assembled panels of experts to assess the quality and effectiveness of the NIST measurements and standards laboratories. In 2011, the NRC evaluated three of the six NIST laboratories: the Center for Nanoscale Science and Technology (CNST), the NIST Center for Neutron Research (NCNR) and the Information Technology Laboratory (ITL). Each of these was addressed individually by a separate panel of experts; this report assesses CNST.
At the request of the National Institute of Standards and Technology (NIST), the National Academies of Sciences, Engineering, and Medicine has, since 1959, annually assembled panels of experts from academia, industry, medicine, and other scientific and engineering communities to assess the quality and effectiveness of the NIST measurements and standards laboratories, of which there are now seven, as well as the adequacy of the laboratories’ resources. An Assessment of the National Institute of Standards and Technology Center for Nanoscale Science and Technology: Fiscal Year 2016 assesses the scientific and technical work performed by the NIST Center for Nanoscale Science and Technology and the accomplisments, challenges, and opportunities for improvement.
Almost a quarter of a century has elapsed since Cellular Biology of the Uterus, the predecessor of the present volume, was planned. During that period, especially in the decade since the publication of the last edition of Biology of the Uterus, new information in the field has been so voluminous as to require major revisions of most of the chapters, the addition of several new chapters, and the collaboration of a second editor to facilitate the selection of appropriate experts as authors. As in prior editions, a balance has been struck between classical biology and modem biochemistry and biophysics. The inclusion of basic histological and embryo logical information provides a necessary, thou...
Reflecting the breadth of the field from research to manufacturing, Nanoscience and Nanoengineering: Advances and Applications delivers an in-depth survey of emerging, high-impact nanotechnologies. Written by a multidisciplinary team of scientists and engineers and edited by prestigious faculty of the Joint School of Nanoscience and Nanoengineering