You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Computer algebra systems are now ubiquitous in all areas of science and engineering. This highly successful textbook, widely regarded as the 'bible of computer algebra', gives a thorough introduction to the algorithmic basis of the mathematical engine in computer algebra systems. Designed to accompany one- or two-semester courses for advanced undergraduate or graduate students in computer science or mathematics, its comprehensiveness and reliability has also made it an essential reference for professionals in the area. Special features include: detailed study of algorithms including time analysis; implementation reports on several topics; complete proofs of the mathematical underpinnings; and a wide variety of applications (among others, in chemistry, coding theory, cryptography, computational logic, and the design of calendars and musical scales). A great deal of historical information and illustration enlivens the text. In this third edition, errors have been corrected and much of the Fast Euclidean Algorithm chapter has been renovated.
Poised to become the leading reference in the field, the Handbook of Finite Fields is exclusively devoted to the theory and applications of finite fields. More than 80 international contributors compile state-of-the-art research in this definitive handbook. Edited by two renowned researchers, the book uses a uniform style and format throughout and
These proceedings reflect the special session on Experimental Mathematics held January 5, 2009, at the Joint Mathematics Meetings in Washington, DC as well as some papers specially solicited for this volume. Experimental Mathematics is a recently structured field of Mathematics that uses the computer and advanced computing technology as a tool to perform experiments. These include the analysis of examples, testing of new ideas, and the search of patterns to suggest results and to complement existing analytical rigor. The development of a broad spectrum of mathematical software products, such as MathematicaR and MapleTM, has allowed mathematicians of diverse backgrounds and interests to use the computer as an essential tool as part of their daily work environment. This volume reflects a wide range of topics related to the young field of Experimental Mathematics. The use of computation varies from aiming to exclude human input in the solution of a problem to traditional mathematical questions for which computation is a prominent tool.
This volume contains invited lectures and selected contributions from the International Workshop on Orthogonal Polynomials and Approximation Theory, held at Universidad Carlos III de Madrid on September 8-12, 2008, and which honored Guillermo Lopez Lagomasino on his 60th birthday. This book presents the state of the art in the theory of Orthogonal Polynomials and Rational Approximation with a special emphasis on their applications in random matrices, integrable systems, and numerical quadrature. New results and methods are presented in the papers as well as a careful choice of open problems, which can foster interest in research in these mathematical areas. This volume also includes a brief account of the scientific contributions by Guillermo Lopez Lagomasino.
This volume corresponds to the Banff International Research Station Workshop on Randomization, Relaxation, and Complexity, held from February 28-March 5, 2010. It contains a sample of advanced algorithmic techniques underpinning the solution of systems of polynomial equations. The papers are written by leading experts in algorithmic algebraic geometry and examine core topics.
The Ontario conference drew workers from theoretical, applied, and algorithm finite field theory to share their recent findings applying finite fields to such areas as number theory, algebra, and algebraic geometry. The 21 topics include actions of linearized polynomials on the algebraic closure of a finite field, kernels and defaults, computing zeta functions over finite fields, and the state complexity of some long codes. No index. Member prices are $39 for institutions and $29 for individuals. Annotation copyrighted by Book News, Inc., Portland, OR
This monograph provides a self-contained presentation of the foundations of finite fields, including a detailed treatment of their algebraic closures. It also covers important advanced topics which are not yet found in textbooks: the primitive normal basis theorem, the existence of primitive elements in affine hyperplanes, and the Niederreiter method for factoring polynomials over finite fields. We give streamlined and/or clearer proofs for many fundamental results and treat some classical material in an innovative manner. In particular, we emphasize the interplay between arithmetical and structural results, and we introduce Berlekamp algebras in a novel way which provides a deeper understanding of Berlekamp's celebrated factorization algorithm. The book provides a thorough grounding in finite field theory for graduate students and researchers in mathematics. In view of its emphasis on applicable and computational aspects, it is also useful for readers working in information and communication engineering, for instance, in signal processing, coding theory, cryptography or computer science.
This book constitutes the refereed proceedings of the 5th International Symposium, Latin American Theoretical Informatics, LATIN 2002, held in Cancun, Mexico, in April 2002. The 44 revised full papers presented together with a tutorial and 7 abstracts of invited contributions were carefully reviewed and selected from a total of 104 submissions. The papers presented are devoted to a broad range of topics from theoretical computer science and mathematical foundations, with a certain focus on algorithmics and computations related to discrete structures.
This book constitutes the refereed proceedings of the 9th International Latin American Symposium on Theoretical Informatics, LATIN 2010, held in Oaxaca, Mexico; in April 2010. The 56 revised full papers presented together with the abstracts of 4 invited plenary talks were carefully reviewed and selected from 155 submissions. The papers address a variety of topics in theoretical computer science with a certain focus on algorithms, automata theory and formal languages, coding theory and data compression, algorithmic graph theory and combinatorics, complexity theory, computational algebra, computational biology, computational geometry, computational number theory, cryptography, theoretical aspects of databases and information retrieval, data structures, networks, logic in computer science, machine learning, mathematical programming, parallel and distributed computing, pattern matching, quantum computing and random structures.