Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Continuous Martingales and Brownian Motion
  • Language: en
  • Pages: 626

Continuous Martingales and Brownian Motion

"This is a magnificent book! Its purpose is to describe in considerable detail a variety of techniques used by probabilists in the investigation of problems concerning Brownian motion....This is THE book for a capable graduate student starting out on research in probability: the effect of working through it is as if the authors are sitting beside one, enthusiastically explaining the theory, presenting further developments as exercises." –BULLETIN OF THE L.M.S.

Introduction to Stochastic Integration
  • Language: en
  • Pages: 292

Introduction to Stochastic Integration

A highly readable introduction to stochastic integration and stochastic differential equations, this book combines developments of the basic theory with applications. It is written in a style suitable for the text of a graduate course in stochastic calculus, following a course in probability. Using the modern approach, the stochastic integral is defined for predictable integrands and local martingales; then It’s change of variable formula is developed for continuous martingales. Applications include a characterization of Brownian motion, Hermite polynomials of martingales, the Feynman–Kac functional and the Schrödinger equation. For Brownian motion, the topics of local time, reflected B...

Portfolio Theory and Arbitrage: A Course in Mathematical Finance
  • Language: en
  • Pages: 309

Portfolio Theory and Arbitrage: A Course in Mathematical Finance

This book develops a mathematical theory for finance, based on a simple and intuitive absence-of-arbitrage principle. This posits that it should not be possible to fund a non-trivial liability, starting with initial capital arbitrarily near zero. The principle is easy-to-test in specific models, as it is described in terms of the underlying market characteristics; it is shown to be equivalent to the existence of the so-called “Kelly” or growth-optimal portfolio, of the log-optimal portfolio, and of appropriate local martingale deflators. The resulting theory is powerful enough to treat in great generality the fundamental questions of hedging, valuation, and portfolio optimization. The bo...

Structural Aspects in the Theory of Probability
  • Language: en
  • Pages: 399

Structural Aspects in the Theory of Probability

This book focuses on the algebraic-topological aspects of probability theory, leading to a wider and deeper understanding of basic theorems, such as those on the structure of continuous convolution semigroups and the corresponding processes with independent increments. The method applied within the setting of Banach spaces and of locally compact Abelian groups is that of the Fourier transform. This analytic tool along with the relevant parts of harmonic analysis makes it possible to study certain properties of stochastic processes in dependence of the algebraic-topological structure of their state spaces. Graduate students, lecturers and researchers may use the book as a primer in the theory of probability measures on groups and related structures.This book has been selected for coverage in: ? CC / Physical, Chemical & Earth Sciences? Index to Scientific Book Contents? (ISBC)

Structural Aspects In The Theory Of Probability (2nd Enlarged Edition)
  • Language: en
  • Pages: 425

Structural Aspects In The Theory Of Probability (2nd Enlarged Edition)

The book is conceived as a text accompanying the traditional graduate courses on probability theory. An important feature of this enlarged version is the emphasis on algebraic-topological aspects leading to a wider and deeper understanding of basic theorems such as those on the structure of continuous convolution semigroups and the corresponding processes with independent increments. Fourier transformation — the method applied within the settings of Banach spaces, locally compact Abelian groups and commutative hypergroups — is given an in-depth discussion. This powerful analytic tool along with the relevant facts of harmonic analysis make it possible to study certain properties of stochastic processes in dependence of the algebraic-topological structure of their state spaces. In extension of the first edition, the new edition contains chapters on the probability theory of generalized convolution structures such as polynomial and Sturm-Liouville hypergroups, and on the central limit problem for groups such as tori, p-adic groups and solenoids.

The Geometry of Filtering
  • Language: en
  • Pages: 179

The Geometry of Filtering

Filtering is the science of nding the law of a process given a partial observation of it. The main objects we study here are di usion processes. These are naturally associated with second-order linear di erential operators which are semi-elliptic and so introduce a possibly degenerate Riemannian structure on the state space. In fact, much of what we discuss is simply about two such operators intertwined by a smooth map, the \projection from the state space to the observations space", and does not involve any stochastic analysis. From the point of view of stochastic processes, our purpose is to present and to study the underlying geometric structure which allows us to perform the ltering in a...

Stochastic Processes and Applications to Mathematical Finance
  • Language: en
  • Pages: 410

Stochastic Processes and Applications to Mathematical Finance

This book contains articles on stochastic processes (stochastic calculus and Malliavin calculus, functionals of Brownian motions and Levy processes, stochastic control and optimization problems, stochastic numerics, and so on) and their applications to problems in mathematical finance. Examples of topics are applications of Malliavin calculus and numerical analysis to a new simulation scheme for calculating the price of financial derivatives, applications of the asymptotic expansion method in Malliavin calculus to financial problems, semimartingale decompositions under an enlargement of filtrations in connection with insider problems, and the problem of transaction costs in connection with stochastic control and optimization problems.

Elements of Functional Analysis
  • Language: en
  • Pages: 399

Elements of Functional Analysis

This book presents the fundamental function spaces and their duals, explores operator theory and finally develops the theory of distributions up to significant applications such as Sobolev spaces and Dirichlet problems. Includes an assortment of well formulated exercises, with answers and hints collected at the end of the book.

Stochastic Processes and Applications to Mathematical Finance
  • Language: en
  • Pages: 410

Stochastic Processes and Applications to Mathematical Finance

This book contains 17 articles on stochastic processes (stochastic calculus and Malliavin calculus, functionals of Brownian motions and L(r)vy processes, stochastic control and optimization problems, stochastic numerics, and so on) and their applications to problems in mathematical finance.The proceedings have been selected for coverage in: OCo Index to Scientific & Technical Proceedings- (ISTP- / ISI Proceedings)OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)OCo Index to Social Sciences & Humanities Proceedings- (ISSHP- / ISI Proceedings)OCo Index to Social Sciences & Humanities Proceedings (ISSHP CDROM version / ISI Proceedings)OCo CC Proceedings OCo Engineering & Physical Sciences"

Probability and Real Trees
  • Language: en
  • Pages: 205

Probability and Real Trees

  • Type: Book
  • -
  • Published: 2007-09-26
  • -
  • Publisher: Springer

Random trees and tree-valued stochastic processes are of particular importance in many fields. Using the framework of abstract "tree-like" metric spaces and ideas from metric geometry, Evans and his collaborators have recently pioneered an approach to studying the asymptotic behavior of such objects when the number of vertices goes to infinity. This publication surveys the relevant mathematical background and present some selected applications of the theory.