You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Offers a treatment of different kinds of James-Stein and ridge regression estimators from a frequentist and Bayesian point of view. The book explains and compares estimators analytically as well as numerically and includes Mathematica and Maple programs used in numerical comparison.;College or university bookshops may order five or more copies at a special student rate, available on request.
"Describes recent developments and surveys important topics in the areas of multivariate analysis, design of experiments, and survey sampling. Features the work of nearly 50 international leaders."
Examines classic algorithms, geometric diagrams, and mechanical principles for enhancing visualization of statistical estimation procedures and mathematical concepts in physics, engineering, and computer programming.
Priced very competitively compared with other textbooks at this level! This gracefully organized textbook reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, numerous figures and tables, and computer simulations to develop and illustrate concepts. Beginning wi
Demonstrates ways to track industrial processes and performance, integrating related areas such as engineering process control, statistical reasoning in TQM, robust parameter design, control charts, multivariate process monitoring, capability indices, experimental design, empirical model building, and process optimization. The book covers a range of statistical methods and emphasizes practical applications of quality control systems in manufacturing, organization and planning.
Describes the selection, design, theory, and application of tests for normality. Covers robust estimation, test power, and univariate and multivariate normality. Contains tests ofr multivariate normality and coordinate-dependent and invariant approaches.
Item Response Theory clearly describes the most recently developed IRT models and furnishes detailed explanations of algorithms that can be used to estimate the item or ability parameters under various IRT models. Extensively revised and expanded, this edition offers three new chapters discussing parameter estimation with multiple groups, parameter estimation for a test with mixed item types, and Markov chain Monte Carlo methods. It includes discussions on issues related to statistical theory, numerical methods, and the mechanics of computer programs for parameter estimation, which help to build a clear understanding of the computational demands and challenges of IRT estimation procedures.
Developing a model-based approach that enables any cross-over trial, of any degree of imbalance, to be analyzed both for direct effects and for residual effects, using consistent procedures that employ commercially available statistical software, this text offers a guide to the analysis of cross-over designs.;Illustrating practical applications throughout with examples, this book: emphasizes the importance of choosing highly efficient designs that separate treatment and carryover effects; demonstrates the exact methodology needed to handle the analysis of data; presents a new methodology for the analysis of binary and categorical data; and considers the effects of blocking. The appendices facilitate the choosing of an appropriate design for every experimental need.
An introduction to general theories of stochastic processes and modern martingale theory. The volume focuses on consistency, stability and contractivity under geometric invariance in numerical analysis, and discusses problems related to implementation, simulation, variable step size algorithms, and random number generation.
This practical reference/text presents a complete introduction to the practice of data analysis - clarifying the geometrical language used, explaining the formulae, reviewing linear algebra and multidimensional Euclidean geometry, and including proofs of results. It is intended as either a self-study guide for professionals involved in experimental research, or as a text for graduate level courses in multidimensional statistics.;The book features fully worked-out exercises, without the help of a computer, illustrating the constructions of correspondence analysis. It gives details of how to prepare, read and interpret computer results, including a complete FORTRAN program listing of the basic algorithms of factor analysis and classification. Sixteen case studies from medicine and biology, economics and the humanities, demonstrate a selection of data and interpretation of results. A foundation for agglomerative hierarchical clustering is provided.