Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Innovations in Bayesian Networks
  • Language: en
  • Pages: 324

Innovations in Bayesian Networks

Bayesian networks currently provide one of the most rapidly growing areas of research in computer science and statistics. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. Each of the twelve chapters is self-contained. Both theoreticians and application scientists/engineers in the broad area of artificial intelligence will find this volume valuable. It also provides a useful sourcebook for Graduate students since it shows the direction of current research.

Learning in Graphical Models
  • Language: en
  • Pages: 658

Learning in Graphical Models

In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and...

Uncertainty in Artificial Intelligence
  • Language: en
  • Pages: 625

Uncertainty in Artificial Intelligence

  • Author(s): MKP
  • Type: Book
  • -
  • Published: 2014-06-28
  • -
  • Publisher: Elsevier

Uncertainty Proceedings 1994

Advances in Neural Information Processing Systems
  • Language: en
  • Pages: 832

Advances in Neural Information Processing Systems

  • Type: Book
  • -
  • Published: 2002-09
  • -
  • Publisher: MIT Press

The proceedings of the 2001 Neural Information Processing Systems (NIPS) Conference. The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. The conference is interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, vision, speech and signal processing, reinforcement learning and control, implementations, and diverse applications. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented at the 2001 conference.

Pattern Classification
  • Language: en
  • Pages: 680

Pattern Classification

The first edition, published in 1973, has become a classicreference in the field. Now with the second edition, readers willfind information on key new topics such as neural networks andstatistical pattern recognition, the theory of machine learning,and the theory of invariances. Also included are worked examples,comparisons between different methods, extensive graphics, expandedexercises and computer project topics. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.

Bayesian Statistics 6
  • Language: en
  • Pages: 886

Bayesian Statistics 6

Bayesian statistics is a dynamic and fast-growing area of statistical research and the Valencia International Meetings provide the main forum for discussion. These resulting proceedings form an up-to-date collection of research.

Encyclopedia of Machine Learning
  • Language: en
  • Pages: 1061

Encyclopedia of Machine Learning

This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.

Causation, Prediction, and Search
  • Language: en
  • Pages: 569

Causation, Prediction, and Search

  • Type: Book
  • -
  • Published: 2001-01-29
  • -
  • Publisher: MIT Press

The authors address the assumptions and methods that allow us to turn observations into causal knowledge, and use even incomplete causal knowledge in planning and prediction to influence and control our environment. What assumptions and methods allow us to turn observations into causal knowledge, and how can even incomplete causal knowledge be used in planning and prediction to influence and control our environment? In this book Peter Spirtes, Clark Glymour, and Richard Scheines address these questions using the formalism of Bayes networks, with results that have been applied in diverse areas of research in the social, behavioral, and physical sciences. The authors show that although experim...

The Quest for Artificial Intelligence
  • Language: en
  • Pages: 644

The Quest for Artificial Intelligence

Artificial intelligence (AI) is a field within computer science that is attempting to build enhanced intelligence into computer systems. This book traces the history of the subject, from the early dreams of eighteenth-century (and earlier) pioneers to the more successful work of today's AI engineers. AI is becoming more and more a part of everyone's life. The technology is already embedded in face-recognizing cameras, speech-recognition software, Internet search engines, and health-care robots, among other applications. The book's many diagrams and easy-to-understand descriptions of AI programs will help the casual reader gain an understanding of how these and other AI systems actually work. Its thorough (but unobtrusive) end-of-chapter notes containing citations to important source materials will be of great use to AI scholars and researchers. This book promises to be the definitive history of a field that has captivated the imaginations of scientists, philosophers, and writers for centuries.

Learning Theory
  • Language: en
  • Pages: 657

Learning Theory

This book constitutes the refereed proceedings of the 17th Annual Conference on Learning Theory, COLT 2004, held in Banff, Canada in July 2004. The 46 revised full papers presented were carefully reviewed and selected from a total of 113 submissions. The papers are organized in topical sections on economics and game theory, online learning, inductive inference, probabilistic models, Boolean function learning, empirical processes, MDL, generalisation, clustering and distributed learning, boosting, kernels and probabilities, kernels and kernel matrices, and open problems.