You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Artificial Intelligence presents a practical guide to AI, including agents, machine learning and problem-solving simple and complex domains.
A comprehensive learning resource for undergraduate and graduate students, with new chapters on deep learning, causality, and social impact.
Provides an integrated introduction to artificial intelligence. Develops AI representation schemes and describes their uses for diverse applications, from autonomous robots to diagnostic assistants to infobots. DLC: Artificial intelligence.
Using stereoscopic images and other novel pedagogical features, this book offers a comprehensive introduction to quantitative finance.
William Poole recounts Milton's life as England’s self-elected national poet and explains how the greatest poem of the English language came to be written. How did a blind man compose this staggeringly complex, intensely visual work? Poole explores how Milton’s life and preoccupations inform the poem itself—its structure, content, and meaning.
David Poole's innovative LINEAR ALGEBRA: A MODERN INTRODUCTION, 4e emphasizes a vectors approach and better prepares students to make the transition from computational to theoretical mathematics. Balancing theory and applications, the book is written in a conversational style and combines a traditional presentation with a focus on student-centered learning. Theoretical, computational, and applied topics are presented in a flexible yet integrated way. Stressing geometric understanding before computational techniques, vectors and vector geometry are introduced early to help students visualize concepts and develop mathematical maturity for abstract thinking. Additionally, the book includes ample applications drawn from a variety of disciplines, which reinforce the fact that linear algebra is a valuable tool for modeling real-life problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Recent advances in the area of lifted inference, which exploits the structure inherent in relational probabilistic models. Statistical relational AI (StaRAI) studies the integration of reasoning under uncertainty with reasoning about individuals and relations. The representations used are often called relational probabilistic models. Lifted inference is about how to exploit the structure inherent in relational probabilistic models, either in the way they are expressed or by extracting structure from observations. This book covers recent significant advances in the area of lifted inference, providing a unifying introduction to this very active field. After providing necessary background on probabilistic graphical models, relational probabilistic models, and learning inside these models, the book turns to lifted inference, first covering exact inference and then approximate inference. In addition, the book considers the theory of liftability and acting in relational domains, which allows the connection of learning and reasoning in relational domains.
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced...
An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.
This book describes how text analytics and computational models of legal reasoning will improve legal IR and let computers help humans solve legal problems.