You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Extensively revised and updated, the new edition of the highly regarded Handbook of Proteolytic Enzymes is an essential reference for biochemists, biotechnologists and molecular biologists. Edited by world-renowned experts in the field, this comprehensive work provides detailed information on all known proteolytic enzymes to date. This two-volume set unveils new developments on proteolytic enzymes which are being investigatedin pharmaceutical research for such diseases as HIV, Hepatitis C, and the common cold. Volume I covers aspartic and metallo petidases while Volume II examines peptidases of cysteine, serine, threonine and unknown catalytic type. A CD-ROM accompanies the book containing f...
Handbook of Proteolytic Enzymes, Second Edition, Volume 1: Aspartic and Metallo Peptidases is a compilation of numerous progressive research studies on proteolytic enzymes. This edition is organized into two main sections encompassing 328 chapters. This handbook is organized around a system for the classification of peptidases, which is a hierarchical one built on the concepts of catalytic type, clan, family and peptidase. The concept of catalytic type of a peptidase depends upon the chemical nature of the groups responsible for catalysis. The recognized catalytic types are aspartic, cysteine, metallo, serine, threonine, and the unclassified enzymes, while clans and families are groups of homologous peptidases. Homology at the level of a family of peptidases is shown by statistically significant relationship in amino acid sequence to a representative member called the type example, or to another member of the family that has already been shown to be related to the type example. Each chapter discusses the history, activity, specificity, structural chemistry, preparation, and biological aspects of the enzyme. This book will prove useful to enzyme chemists and researchers.
Recent developments in concepts and techniques have brought enzyme research to a changing yet exciting stage. Enzymes have served as indispensable tools in the phenomenal rise of molecular biology, and the resultant biotechnology thrusts enzymes to new heights and territories. This volume, the proceedings of a recent symposium on the Dynamics of Soluble and Immobilized Enzyme Systems, provides a current overview of the field to help scientists utilize long-established and newly acquired information.
This volume contains up-to-date information on aldehyde dehydrogenase, alcohol dehydrogenase, short- and medium-chain dehydrogenase, and reductases. Sixty-nine contributions provide a wide variety of information on enzymology, molecular biology, and metabolic aspects of these carbonyl metabolizing oxidoreductases. Much new information is provided, including previously unreported three-dimensional structures of enzymes and new aspects of gene regulation, along with sequence alignments, metabolism and enzyme mechanisms.
Following an overview on proteolytic enzyme assays, this text covers procedures on how to investigate and study proteases. It describes the use of specific restriction proteases as well as inhibitors of proteases to prevent unwanted proteolysis.
Biological chemistry is a major frontier of inorganic chemistry. Three special volumes devoted to Metal Sites in Proteins and Models address the questions: how unusual ("entatic") are metal sites in metalloproteins and metalloenzymes compared to those in small coordination complexes? and if they are special, how do polypeptide chains and co-factors control this? The chapters deal with iron, with metal centres acting as Lewis acids, metals in phosphate enzymes, with vanadium, and with the wide variety of transition metal ions which act as redox centres. They illustrate in particular how the combined armoury of genetics and structure determination at the molecular level are providing unprecedented new tools for molecular engineering.
Thirty chapters provide a handbook-like treatment of magnesium and its function in the environment, its bioinorganic chemistry, its role for plants and in animal and human nutrition, its biochemistry and physiology, and its relation to human health and disease. The last 20 years have seen a prolifer