You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume presents the state-of-the-art in selected topics across modern nuclear physics, covering fields of central importance to research and illustrating their connection to many different areas of physics. It describes recent progress in the study of superheavy and exotic nuclei, which is pushing our knowledge to ever heavier elements and neutron-richer isotopes. Extending nuclear physics to systems that are many times denser than even the core of an atomic nucleus, one enters the realm of the physics of neutron stars and possibly quark stars, a topic that is intensively investigated with many ground-based and outer-space research missions as well as numerous theoretical works. By coll...
This book starts with the mathematical basis of the theory - i.e. provide a brief sketch of the theory of manifolds and frame bundles, tensors and their transformations, relativistic kinematics, and aspects of non-flat space-time geometries. The definition of relevant physical quantities (torsion, curvature, non-metricity, tetrads, connection fields etc.) and important geometry concepts are also included. The main body of the book is devoted to a detailed derivation of the gauge theory of gravitation for scalar, vector (Proca and Maxwell) and Dirac spinor fields. Alternative approaches based on the Noether theorem and on the spinorial representation of the fields are also addressed, as well as important novel features related to the CCGG framework (Birkhoff theorem, field derivative identities etc.). In the last section of the volume the application of the CCGG theory to cosmology will be set out, resulting in a new understanding of dark energy and inflation.
Relativistic Quantum Mechanics - Wave Equations concentrates mainly on the wave equations for spin-0 and spin-1/2 particles. Chapter 1 deals with the Klein-Gordon equation and its properties and applications. The chapters that follow introduce the Dirac equation, investigate its covariance properties and present various approaches to obtaining solutions. Numerous applications are discussed in detail, including the two-center Dirac equation, hole theory, CPT symmetry, Klein's paradox, and relativistic symmetry principles. Chapter 15 presents the relativistic wave equations for higher spin (Proca, Rarita-Schwinger, and Bargmann-Wigner). The extensive presentation of the mathematical tools and the 62 worked examples and problems make this a unique text for an advanced quantum mechanics course.
With contributions by leading theoreticians, this book presents the discoveries of hitherto hidden connections between seemingly unrelated fields of fundamental physics. The topics range from cosmology and astrophysics to nuclear-, particle- and heavy-ion science. A current example concerns the sensitivity of gravitational wave spectra to the phase structure of dense nuclear and quark matter in binary neutron star collisions. The contributions by Hanauske and Stoecker as well as Banik and Bandyopadhyay relate the consequent insights to hot dense nuclear matter created in supernova explosions and in high-energy heavy-ion collisions. Studies of the equation of state for neutron stars are also presented, as are those for nuclear matter in high-energy heavy-ion collisions. Other reviews focus on QCD-thermodynamics, charmed mesons in the quark-gluon plasma, nuclear theory, extensions to the standard general theory of relativity, new experimental developments in heavy ion collisions and renewable energy networks. The book will appeal to advanced students and researchers seeking a broad view of current challenges in theoretical physics and their interconnections.
Relativistic Quantum Mechanics. Wave Equations concentrates mainly on the wave equations for spin-0 and spin-1/2 particles. Chapter 1 deals with the Klein-Gordon equation and its properties and applications. The chapters that follow introduce the Dirac equation, investigate its covariance properties and present various approaches to obtaining solutions. Numerous applications are discussed in detail, including the two-center Dirac equation, hole theory, CPT symmetry, Klein's paradox, and relativistic symmetry principles. Chapter 15 presents the relativistic wave equations for higher spin (Proca, Rarita-Schwinger, and Bargmann-Wigner). The extensive presentation of the mathematical tools and the 62 worked examples and problems make this a unique text for an advanced quantum mechanics course. This third edition has been slightly revised to bring the text up-to-date.
None
Theoretical Approaches of Heavy Ion Reaction Mechanisms provides information pertinent to heavy ion reactions and nuclear fission at low energies. This book discusses the features of the time-dependent solution of the Kramer–Chandrasekhar equation. Organized into 27 chapters, this book begins with an overview of the deexcitation process of a highly excited nucleus by means of its decay into two fragments. This text then presents a microscopic description to extract the characteristics features of the collective dynamics of the fission process at low energy. Other chapters consider nuclear fission as a transport process over the fission barrier. This book discusses as well the microscopic foundations of the phenomenological collective models. The final chapter deals with the composition of the baryons and mesons in terms of gluons and quarks. This book is a valuable resource for nuclear and high energy physicists. Experimentalists, theoreticians, and research workers will also find this book useful.
This book presents the extended Lagrange and Hamilton formalisms of point mechanics and field theory in the usual tensor language of standard textbooks on classical dynamics. The notion 'extended' signifies that the physical time of point dynamics as well as the space-time in field theories are treated as dynamical variables. It thus elaborates on some important questions including: How do we convert the canonical formalisms of Lagrange and Hamilton that are built upon Newton's concept of an absolute time into the appropriate form of the post-Einstein era? How do we devise a Hamiltonian field theory with space-time as a dynamical variable in order to also cover General Relativity?In this boo...
A rich picture of village life in the 7th and 6th millennia BC, as seen through the excavations of an important site in Greece. Especially noteworthy is the extensive corpus ofmaterials relating to domestic cult practice (figurines and vessels). Also included are specialist studies of faunal and floral remains, lithics, and radiocarbon dates.