You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In the last decade or so, analytic methods have had great success in answering questions in arithmetic geometry and number theory. The School provided a unique opportunity to introduce graduate students to analytic methods in arithmetic geometry. The book contains four articles. Alina C. Cojocaru's article introduces sieving techniques to study the group structure of points of the reduction of an elliptic curve modulo a rational prime via its division fields. Harald A. Helfgott's article provides an introduction to the study of growth in groups of Lie type, with SL2(Fq) and some of its subgroups as the key examples. The article by Étienne Fouvry, Emmanuel Kowalski, Philippe Michel, and Will Sawin describes how a systematic use of the deep methods from ℓ-adic cohomology pioneered by Grothendieck and Deligne and further developed by Katz and Laumon help make progress on various classical questions from analytic number theory. The last article, by Andrew V. Sutherland, introduces Sato-Tate groups and explores their relationship with Galois representations, motivic L-functions, and Mumford-Tate groups.
View the abstract.
This textbook introduces exciting new developments and cutting-edge results on the theme of hyperbolicity. Written by leading experts in their respective fields, the chapters stem from mini-courses given alongside three workshops that took place in Montréal between 2018 and 2019. Each chapter is self-contained, including an overview of preliminaries for each respective topic. This approach captures the spirit of the original lectures, which prepared graduate students and those new to the field for the technical talks in the program. The four chapters turn the spotlight on the following pivotal themes: The basic notions of o-minimal geometry, which build to the proof of the Ax–Schanuel con...
This is Part 2 of a two-volume set. Since Oscar Zariski organized a meeting in 1954, there has been a major algebraic geometry meeting every decade: Woods Hole (1964), Arcata (1974), Bowdoin (1985), Santa Cruz (1995), and Seattle (2005). The American Mathematical Society has supported these summer institutes for over 50 years. Their proceedings volumes have been extremely influential, summarizing the state of algebraic geometry at the time and pointing to future developments. The most recent Summer Institute in Algebraic Geometry was held July 2015 at the University of Utah in Salt Lake City, sponsored by the AMS with the collaboration of the Clay Mathematics Institute. This volume includes ...
The Langlands program has been a very active and central field in mathematics ever since its conception over 50 years ago. It connects number theory, representation theory and arithmetic geometry, and other fields in a profound way. There are nevertheless very few expository accounts beyond the GL(2) case. This book features expository accounts of several topics on automorphic forms on higher rank groups, including rationality questions on unitary group, theta lifts and their applications to Arthur's conjectures, quaternionic modular forms, and automorphic forms over functions fields and their applications to inverse Galois problems. It is based on the lecture notes prepared for the twenty-fifth Arizona Winter School on “Automorphic Forms beyond GL(2)”, held March 5–9, 2022, at the University of Arizona in Tucson. The speakers were Ellen Eischen, Wee Teck Gan, Aaron Pollack, and Zhiwei Yun. The exposition of the book is in a style accessible to students entering the field. Advanced graduate students as well as researchers will find this a valuable introduction to various important and very active research areas.
Testimonios brings together first-person narratives from the vibrant, diverse, and complex Latinx and Hispanic mathematical community. Starting with childhood and family, the authors recount their own individual stories, highlighting their upbringing, education, and career paths. Their particular stories, told in their own voices, from their own perspectives, give visibility to some of the experiences of Latinx/Hispanic mathematicians. Testimonios seeks to inspire the next generation of Latinx and Hispanic mathematicians by featuring the stories of people like them, holding a mirror up to our own community. It also aims to provide a window for mathematicians (and aspiring mathematicians) from all ethnicities, with the hope of inspiring a better understanding of the diversity of the mathematical community.
This book will be published Open Access with a Creative Commons Attribution 4.0 International License (CC BY 4.0). The eBook can be downloaded electronically for free. This volume contains the proceedings of the LuCaNT (LMFDB, Computation, and Number Theory) conference held from July 10–14, 2023, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island and affiliated with Brown University. This conference provided an opportunity for researchers, scholars, and practitioners to exchange ideas, share advances, and collaborate in the fields of computation, mathematical databases, number theory, and arithmetic geometry. The papers that appear in this volume record recent advances in these areas, with special focus on the LMFDB (the L-Functions and Modular Forms Database), an online resource for mathematical objects arising in the Langlands program and the connections between them.
A self-contained introduction to logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry.
This volume contains the proceedings of the Workshop on Motivic Homotopy Theory and Refined Enumerative Geometry, held from May 14–18, 2018, at the Universität Duisburg-Essen, Essen, Germany. It constitutes an accessible yet swift introduction to a new and active area within algebraic geometry, which connects well with classical intersection theory. Combining both lecture notes aimed at the graduate student level and research articles pointing towards the manifold promising applications of this refined approach, it broadly covers refined enumerative algebraic geometry.
This volume contains the proceedings of the Workshop and 18th International Conference on Representations of Algebras (ICRA 2018) held from August 8–17, 2018, in Prague, Czech Republic. It presents several themes of contemporary representation theory together with some new tools, such as stable ∞ ∞-categories, stable derivators, and contramodules. In the first part, expanded lecture notes of four courses delivered at the workshop are presented, covering the representation theory of finite sets with correspondences, geometric theory of quiver Grassmannians, recent applications of contramodules to tilting theory, as well as symmetries in the representation theory over an abstract stable homotopy theory. The second part consists of six more-advanced papers based on plenary talks of the conference, presenting selected topics from contemporary representation theory: recollements and purity, maximal green sequences, cohomological Hall algebras, Hochschild cohomology of associative algebras, cohomology of local selfinjective algebras, and the higher Auslander–Reiten theory studied via homotopy theory.