You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Taking a practical approach to the subject, Advanced Engineering Mathematics with MATLAB®, Third Edition continues to integrate technology into the conventional topics of engineering mathematics. The author employs MATLAB to reinforce concepts and solve problems that require heavy computation. MATLAB scripts are available for download at www.crcpress.com Along with new examples, problems, and projects, this updated and expanded edition incorporates several significant improvements. New to the Third Edition New chapter on Green’s functions New section that uses the matrix exponential to solve systems of differential equations More numerical methods for solving differential equations, inclu...
Since publication of the first edition over a decade ago, Green’s Functions with Applications has provided applied scientists and engineers with a systematic approach to the various methods available for deriving a Green’s function. This fully revised Second Edition retains the same purpose, but has been meticulously updated to reflect the current state of the art. The book opens with necessary background information: a new chapter on the historical development of the Green’s function, coverage of the Fourier and Laplace transforms, a discussion of the classical special functions of Bessel functions and Legendre polynomials, and a review of the Dirac delta function. The text then prese...
Methods for Solving Mixed Boundary Value Problems An up-to-date treatment of the subject, Mixed Boundary Value Problems focuses on boundary value problems when the boundary condition changes along a particular boundary. The book often employs numerical methods to solve mixed boundary value problems and the associated integral equat
Transform methods provide a bridge between the commonly used method of separation of variables and numerical techniques for solving linear partial differential equations. While in some ways similar to separation of variables, transform methods can be effective for a wider class of problems. Even when the inverse of the transform cannot be found ana
In the four previous editions the author presented a text firmly grounded in the mathematics that engineers and scientists must understand and know how to use. Tapping into decades of teaching at the US Navy Academy and the US Military Academy and serving for twenty-five years at (NASA) Goddard Space Flight, he combines a teaching and practical experience that is rare among authors of advanced engineering mathematics books. This edition offers a smaller, easier to read, and useful version of this classic textbook. While competing textbooks continue to grow, the book presents a slimmer, more concise option. Instructors and students alike are rejecting the encyclopedic tome with its higher and...
Through four previous editions of Advanced Engineering Mathematics with MATLAB, the author presented a wide variety of topics needed by today's engineers. The fifth edition of that book, available now, has been broken into two parts: topics currently needed in mathematics courses and a new stand-alone volume presenting topics not often included in these courses and consequently unknown to engineering students and many professionals. The overall structure of this new book consists of two parts: transform methods and random processes. Built upon a foundation of applied complex variables, the first part covers advanced transform methods, as well as z-transforms and Hilbert transforms--transform...
This work is based on the experience and notes of the authors while teaching mathematics courses to engineering students at the Indian Institute of Technology, New Delhi. It covers syllabi of two core courses in mathematics for engineering students.
Resoundingly popular in its first edition, Dean Duffy's Advanced Engineering Mathematics has been updated, expanded, and now more than ever provides the solid mathematics background required throughout the engineering disciplines. Melding the author's expertise as a practitioner and his years of teaching engineering mathematics, this text stands clearly apart from the many others available. Relevant, insightful examples follow nearly every concept introduced and demonstrate its practical application. This edition includes two new chapters on differential equations, another on Hilbert transforms, and many new examples, problems, and projects that help build problem-solving skills. Most importantly, the book now incorporates the use of MATLAB throughout the presentation to reinforce the concepts presented. MATLAB code is included so readers can take an analytic result, fully explore it graphically, and gain valuable experience with this industry-standard software.
This text takes the student with a background in undergraduate physics and mathematics towards the skills and insights needed for graduate work in theoretical physics. The author uses Green's functions to explore the physics of potentials, diffusion, and waves. These are important phenomena in their own right, but this study of the partial differential equations describing them also prepares the student for more advanced applications in many-body physics and field theory. Calculations are carried through in enough detail for self-study, and case histories illustrate the interplay between physical insight and mathematical formalism. The aim is to develop the habit of dialogue with the equations and the craftsmanship this fosters in tackling the problem. The book is based on the author's extensive teaching experience.