You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
As long as humans have existed on the planet, they have looked at the world around them and wondered about much of what they saw. This book covers 21 different phenomena that have been observed in nature and puzzled about for decades.Only recently, with the development of the microscopes and other tools that allow us to study, evaluate, and test these observed phenomena at the molecular and atomic scale, have researchers been able to understand the science behind these observations. From the strength of a marine sponge found at the depths of the oceans, to the insect-hydroplaning surface of the edge of a plant, to the intricacies of the eyes of a moth, nanotechnology has allowed science to define and understand these amazing capabilities. In many cases, this new understanding has been applied to products and applications that benefit humans and the environment. For each of the five ecosystems— the ocean, insects, flora, fauna, and humans—the observations, study and understanding, and applications will be covered. The relationship between the more easily observed macro level and understanding what is found at the nanoscale will also be discussed.
As long as humans have existed on the planet, they have looked at the world around them and wondered about much of what they saw. This book covers 21 different phenomena that have been observed in nature and puzzled about for decades.Only recently, with the development of the microscopes and other tools that allow us to study, evaluate, and test these observed phenomena at the molecular and atomic scale, have researchers been able to understand the science behind these observations. From the strength of a marine sponge found at the depths of the oceans, to the insect-hydroplaning surface of the edge of a plant, to the intricacies of the eyes of a moth, nanotechnology has allowed science to define and understand these amazing capabilities. In many cases, this new understanding has been applied to products and applications that benefit humans and the environment. For each of the five ecosystems— the ocean, insects, flora, fauna, and humans—the observations, study and understanding, and applications will be covered. The relationship between the more easily observed macro level and understanding what is found at the nanoscale will also be discussed.
Intellectual Property Issues in Nanotechnology focuses on the integrated approach for sustained innovation in various areas of nanotechnology. The theme of this book draws to a great extent on the industrial and socio-legal implications of intellectual property rights for nanotechnology-based advances. The book takes a comprehensive look not only at the role of intellectual property rights in omics-based research but also at the ethical and intellectual standards and how these can be developed for sustained innovation. This book attempts to collate and organize information on current attitudes and policies in several emerging areas of nanotechnology. Adopting a unique approach, this book integrates science and business for an inside view of the industry. Peering behind the scenes, it provides a thorough analysis of the foundations of the present day industry for students and professionals alike.
This book presents the perspectives of nanotechnology educators from around the world. Experts present the pressing challenges of teaching nanoscience and engineering to students in all levels of education, postsecondary and informal environments. The book was inspired by the 2014 NSF workshop for Nanoscience and Engineering Education. Since nanotechnology is a relatively new field, authors present recommendations for designing nanotechnology education programs. The chapters describe methods to teach specific topics, such as probe microscopy, size and scale, and nanomaterial safety, in classrooms around the world. Other chapters describe the ways that organizations like NNIN and the NISE Network have influenced informal nanotechnology education. Information technology plays a growing role in all types of education and several chapters are devoted to describing ways how educators can use online curricula for teaching nanotechnology to students from preschool to graduate school.
Introduction to Engineering Design is a practical, straightforward workbook designed to systematize the often messy process of designing solutions to open-ended problems. IFrom learning about the problem to prototyping a solution, this workbook guides developing engineers and designers through the iterative steps of the engineering design process. Created in a freshman engineering design course over ten years, this workbook has been refined to clearly guide students and teams to success. Together with a series of instructional videos and short project examples, the workbook has space for teams to execute the engineering design process on a challenge of their choice. Designed for university students as well as motivated learners, the workbook supports creative students as they tackle important problems. IIntroduction to Engineering Design is designed for educators looking to use project-based engineering design in their classroom.
This book presents a comprehensive overview of nanoscale electronics and systems packaging, and covers nanoscale structures, nanoelectronics packaging, nanowire applications in packaging, and offers a roadmap for future trends. Composite materials are studied for high-k dielectrics, resistors and inductors, electrically conductive adhesives, conductive "inks," underfill fillers, and solder enhancement. The book is intended for industrial and academic researchers, industrial electronics packaging engineers who need to keep abreast of progress in their field, and others with interests in nanotechnology. It surveys the application of nanotechnologies to electronics packaging, as represented by current research across the field.
Nanotechnology safety is the practice of handling engineered nanomaterials in production and manufacturing. Good practice consists of understanding and interpreting Material Safety Data Sheets, behaving safely when working with yet unknown nanomaterials, understanding health effects, and proactively creating safety measures against potential hazards. This book addresses nanotechnology risk management.
What causes an Israeli born in Romania to immigrate to America and end up with over three hundred patents in his name in the most exciting scientific and technological breakthroughs of the twentieth century? Join the adventures of physicist, inventor, and entrepreneur Zvi Yaniv and see how Jules Verne’s book, The Mysterious Island, ignited his imagination and love for science, which, in turn, propelled him to a career in flat panel displays, image digitizers, and molecular engineering. These fields eventually became an integral part of what is known in the common vernacular today as nanotechnology. Do you use an image scanner digitizer? Are you reading this on a flat panel display, on your...
Advances in nanotechnology are transforming the ways of creating materials and products, leading society to the threshold of a second industrial revolution. However, future opportunities will depend significantly on how nanotechnology stakeholders deal with the short-term and long-term benefits, limitations, uncertainties and risks of nanotechnology. They will be tasked with navigating a variety of new social and ethical challenges associated with areas such as privacy, the environment, energy, population, genetics, agriculture, food, and security. Unique in its depth, breadth, and variety of viewpoints, Nanotechnology: Ethical and Social Implications stimulates, inspires, and builds awarene...
The primary objective of the NATO Advanced Study Institute (ASI) titled “Functionalized Nanoscale Materials, Devices, and Systems for Chem. -Bio Sensors, Photonics, and Energy Generation and Storage” was to present a contemporary and comprehensive overview of the field of nanostructured materials and devices and its applications in chem. -bio sensors, nanophotonics, and energy generation and storage devices. The study has become one of the most promising disciplines in science and technology, as it aims at the fundamental understanding of new physical, che- cal, and biological properties of systems and the technological advances arising from their exploration. Such systems are intermedia...