You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Solutions for learning from large scale datasets, including kernel learning algorithms that scale linearly with the volume of the data and experiments carried out on realistically large datasets. Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale ...
Advancements in the technology and availability of data sources have led to the `Big Data' era. Working with large data offers the potential to uncover more fine-grained patterns and take timely and accurate decisions, but it also creates a lot of challenges such as slow training and scalability of machine learning models. One of the major challenges in machine learning is to develop efficient and scalable learning algorithms, i.e., optimization techniques to solve large scale learning problems. Stochastic Optimization for Large-scale Machine Learning identifies different areas of improvement and recent research directions to tackle the challenge. Developed optimisation techniques are also e...
This text surveys research from the fields of data mining and information visualisation and presents a case for techniques by which information visualisation can be used to uncover real knowledge hidden away in large databases.
"Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional data sets. This collection describes key approaches in sparse modeling, focusing on its applications in such fields as neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models"--Jacket.
An overview of recent efforts in the machine learning community to deal with dataset and covariate shift, which occurs when test and training inputs and outputs have different distributions. Dataset shift is a common problem in predictive modeling that occurs when the joint distribution of inputs and outputs differs between training and test stages. Covariate shift, a particular case of dataset shift, occurs when only the input distribution changes. Dataset shift is present in most practical applications, for reasons ranging from the bias introduced by experimental design to the irreproducibility of the testing conditions at training time. (An example is -email spam filtering, which may fail...
Advances in training models with log-linear structures, with topics including variable selection, the geometry of neural nets, and applications. Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitting techniques used to train models. This volume covers recent advances in training models with log-linear structures, covering the underlying geometry, optimization techniques, and multiple applications. The first chapter shows readers the inner workings...
This volume presents a timely overview of the latest BCI research, with contributions from many of the important research groups in the field.
How Machine Learning can improve machine translation: enabling technologies and new statistical techniques.
The third SIAM International Conference on Data Mining provided an open forum for the presentation, discussion and development of innovative algorithms, software and theories for data mining applications and data intensive computation. This volume includes 21 research papers.
The ability to learn is a fundamental characteristic of intelligent behavior. Consequently, machine learning has been a focus of artificial intelligence since the beginnings of AI in the 1950s. The 1980s saw tremendous growth in the field, and this growth promises to continue with valuable contributions to science, engineering, and business. Readings in Machine Learning collects the best of the published machine learning literature, including papers that address a wide range of learning tasks, and that introduce a variety of techniques for giving machines the ability to learn. The editors, in cooperation with a group of expert referees, have chosen important papers that empirically study, theoretically analyze, or psychologically justify machine learning algorithms. The papers are grouped into a dozen categories, each of which is introduced by the editors.