You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An $n$-dimensional $\mu$-component boundary link is a codimension $2$ embedding of spheres $L=\sqcup_{\mu}S DEGREESn \subset S DEGREES{n+2}$ such that there exist $\mu$ disjoint oriented embedded $(n+1)$-manifolds which span the components of $L$. This title proceeds to compute the isomorphism class of $C_{
Studies the elastic problems on simply connected manifolds $M_n$ whose orthonormal frame bundle is a Lie group $G$. This title synthesizes ideas from optimal control theory, adapted to variational problems on the principal bundles of Riemannian spaces, and the symplectic geometry of the Lie algebra $\mathfrak{g}, $ of $G$
Introduction Partial commutative monoids Continuous dimension scales Espaliers Classes of espaliers Bibliography Index
Complex symplectic spaces are non-trivial generalizations of the real symplectic spaces of classical analytical dynamics. This title presents a self-contained investigation of general complex symplectic spaces, and their Lagrangian subspaces, regardless of the finite or infinite dimensionality.
This volume includes both survey and research articles on major advances and future developments in geometry and topology. Papers include those presented as part of the 5th Aarhus Conference - a meeting of international participants held in connection with ICM Berlin in 1998 - and related papers on the subject. This collection of papers is aptly published in the Contemporary Mathematics series, as the works represent the state of research and address areas of future development in the area of manifold theory and geometry. The survey articles in particular would serve well as supplemental resources in related graduate courses.
Studies two types of integral transformation associated with fractional Brownian motion, that are applied to construct approximation schemes for fractional Brownian motion by polygonal approximation of standard Brownian motion. This approximation is the best in the sense that it minimizes the mean square error.
By an easy generalization of the Tannaka-Krein reconstruction we associate to the category of admissible representations of the category ${\mathcal O}$ of a Kac-Moody algebra, and its category of admissible duals, a monoid with a coordinate ring. The Kac-Moody group is the Zariski open dense unit group of this monoid. The restriction of the coordinate ring to the Kac-Moody group is the algebra of strongly regular functions introduced by V. Kac and D. Peterson. This monoid has similar structural properties as a reductive algebraic monoid. In particular it is unit regular, its idempotents related to the faces of the Tits cone. It has Bruhat and Birkhoff decompositions. The Kac-Moody algebra is isomorphic to the Lie algebra of this monoid.
Considers the Cauchy problem for a strictly hyperbolic $2\times 2$ system of conservation laws in one space dimension $u_t+ F(u)]_x=0, u(0, x)=\bar u(x), $ which is neither linearly degenerate nor genuinely non-linea
For every finitely generated recursively presented group $\mathcal G$ we construct a finitely presented group $\mathcal H$ containing $\mathcal G$ such that $\mathcal G$ is (Frattini) embedded into $\mathcal H$ and the group $\mathcal H$ has solvable conjugacy problem if and only if $\mathcal G$ has solvable conjugacy problem.
Considers the behavior of $\mathrm{G}_\mathcal{C}(k)$ when $\mathcal{C}$ is a locally finite equational class (variety) of algebras and $k$ is finite. This title looks at ways that algebraic properties of $\mathcal{C}$ lead to upper or lower bounds on generative complexity.