You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the Summer Program on Nonlinear Conservation Laws and Applications held at the IMA on July 13--31, 2009. Hyperbolic conservation laws is a classical subject, which has experienced vigorous growth in recent years. The present collection provides a timely survey of the state of the art in this exciting field, and a comprehensive outlook on open problems. Contributions of more theoretical nature cover the following topics: global existence and uniqueness theory of one-dimensional systems, multidimensional conservation laws in several space variables and approximations of their solutions, mathematical analysis of fluid motion, stability and dynamics of vis...
This monograph presents a geometric theory for incompressible flow and its applications to fluid dynamics. The main objective is to study the stability and transitions of the structure of incompressible flows and its applications to fluid dynamics and geophysical fluid dynamics. The development of the theory and its applications goes well beyond its original motivation of the study of oceanic dynamics. The authors present a substantial advance in the use of geometric and topological methods to analyze and classify incompressible fluid flows. The approach introduces genuinely innovative ideas to the study of the partial differential equations of fluid dynamics. One particularly useful develop...
Boolean, relation-induced, and other operations for dealing with first-order definability Uniform relations between sequences Diagonal relations Uniform diagonal relations and some kinds of bisections or bisectable relations Presentation of ${\mathbf S}_q$, ${\mathbf S}_p$ and related structures Presentation of ${\mathbf S}_{pq}$, ${\mathbf S}_{pe}$ and related structures Appendix. Presentation of ${\mathbf S}_{pqe}$ and related structures Bibliography Index of symbols Index of phrases and subjects List of relations involved in presentations Synopsis of presentations
In the field known as "the mathematical theory of shock waves," very exciting and unexpected developments have occurred in the last few years. Joel Smoller and Blake Temple have established classes of shock wave solutions to the Einstein Euler equations of general relativity; indeed, the mathematical and physical con sequences of these examples constitute a whole new area of research. The stability theory of "viscous" shock waves has received a new, geometric perspective due to the work of Kevin Zumbrun and collaborators, which offers a spectral approach to systems. Due to the intersection of point and essential spectrum, such an ap proach had for a long time seemed out of reach. The stabili...
The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.
This memoir completes the series of papers beginning with [KL1,KL2], showing that, for a commutative noetherian ring $\Lambda$, either the category of $\Lambda$-modules of finite length has wild representation type or else we can describe the category of finitely generated $\Lambda$-modules, including their direct-sum relations and local-global relations. (There is a possible exception to our results, involving characteristic 2.)
The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.
The evolution operator for the Lax-Phillips scattering system is an isometric representation of the Cuntz algebra, while the nonnegative time axis for the conservative, linear system is the free semigroup on $d$ letters. This title presents a multivariable setting for Lax-Phillips scattering and for conservative, discrete-time, linear systems.
In this the authors obtain an isoperimetric characterization of relatively hyperbolicity of a groups with respect to a collection of subgroups. This allows them to apply classical combinatorial methods related to van Kampen diagrams to obtain relative analogues of some well-known algebraic and geometric properties of ordinary hyperbolic groups. There is also an introduction and study of the notion of a relatively quasi-convex subgroup of a relatively hyperbolic group and solve somenatural algorithmic problems.
In these memoirs Bobkov and Zegarlinski describe interesting developments in infinite dimensional analysis that moved it away from experimental science. Here they also describe Poincar -type inequalities, entropy and Orlicz spaces, LSq and Hardy-type inequalities on the line, probability measures satisfying LSq inequalities on the real line, expo