You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Reasoning under uncertainty is always based on a specified language or for malism, including its particular syntax and semantics, but also on its associated inference mechanism. In the present volume of the handbook the last aspect, the algorithmic aspects of uncertainty calculi are presented. Theory has suffi ciently advanced to unfold some generally applicable fundamental structures and methods. On the other hand, particular features of specific formalisms and ap proaches to uncertainty of course still influence strongly the computational meth ods to be used. Both general as well as specific methods are included in this volume. Broadly speaking, symbolic or logical approaches to uncertaint...
In the evolution of scientific theories, concern with uncertainty is almost invariably a concomitant of maturation. This is certainly true of the evolution· of physics, economics, operations research, communication sciences, and a host of other fields. And it is true of what has been happening more recently in the area of artificial intelligence, most notably in the development of theories relating to the management of uncertainty in knowledge-based systems. In science, it is traditional to deal with uncertainty through the use of probability theory. In recent years, however, it has become increasingly clear that there are some important facets of uncertainty which do not lend themselves to analysis by classical probability-based methods. One such facet is that of lexical elasticity, which relates to the fuzziness of words in natural languages. As a case in point, even a simple relation X, Y, and Z, expressed as if X is small and Y is very large then between Z is not very small, does not lend itself to a simple interpretation within the framework of probability theory by reason of the lexical elasticity of the predicates small and large.
This book constitutes the refereed proceedings of the 1999 European Conference on Symbolic and Quantitative Approaches to Reasoning under Uncertainty, ECSQARU'99, held in London, UK, in July 1999. The 35 revised full papers presented were carefully reviewed and selected for inclusion in the book by the program committee. The volume covers theoretical as well as application-oriented aspects of various formalisms for reasoning under uncertainty. Among the issues addressed are default reasoning, nonmonotonic reasoning, fuzzy logic, Bayesian theory, probabilistic reasoning, inductive learning, rough knowledge discovery, Dempster-Shafer theory, qualitative decision making, belief functions, and evidence theory.
This book provides an overview of the main methods and results in the formal study of the human decision-making process, as defined in a relatively wide sense. A key aim of the approach contained here is to try to break down barriers between various disciplines encompassed by this field, including psychology, economics and computer science. All these approaches have contributed to progress in this very important and much-studied topic in the past, but none have proved sufficient so far to define a complete understanding of the highly complex processes and outcomes. This book provides the reader with state-of-the-art coverage of the field, essentially forming a roadmap to the field of decisio...
The principal aim of this book is to introduce to the widest possible audience an original view of belief calculus and uncertainty theory. In this geometric approach to uncertainty, uncertainty measures can be seen as points of a suitably complex geometric space, and manipulated in that space, for example, combined or conditioned. In the chapters in Part I, Theories of Uncertainty, the author offers an extensive recapitulation of the state of the art in the mathematics of uncertainty. This part of the book contains the most comprehensive summary to date of the whole of belief theory, with Chap. 4 outlining for the first time, and in a logical order, all the steps of the reasoning chain assoc...
Managing vagueness/fuzziness is starting to play an important role in Semantic Web research, with a large number of research efforts underway. Foundations of Fuzzy Logic and Semantic Web Languages provides a rigorous and succinct account of the mathematical methods and tools used for representing and reasoning with fuzzy information within Semantic
This volume presents a collection of refereed papers reflecting the state of the art in the area of over-constrained systems. Besides 11 revised full papers, selected from the 24 submissions to the OCS workshop held in conjunction with the First International Conference on Principles and Practice of Constraint Programming, CP '95, held in Marseilles in September 1995, the book includes three comprehensive background papers of central importance for the workshop papers and the whole field. Also included is an introduction by one of the volume editors together with a bibliography listing 243 entries. All in all this is a very useful reference book relevant for all researchers and practitioners interested in hierarchical, partial, and over-constrained systems.
Fuzzy Models and Algorithms for Pattern Recognition and Image Processing presents a comprehensive introduction of the use of fuzzy models in pattern recognition and selected topics in image processing and computer vision. Unique to this volume in the Kluwer Handbooks of Fuzzy Sets Series is the fact that this book was written in its entirety by its four authors. A single notation, presentation style, and purpose are used throughout. The result is an extensive unified treatment of many fuzzy models for pattern recognition. The main topics are clustering and classifier design, with extensive material on feature analysis relational clustering, image processing and computer vision. Also included are numerous figures, images and numerical examples that illustrate the use of various models involving applications in medicine, character and word recognition, remote sensing, military image analysis, and industrial engineering.
Fuzzy logic allows computer programmers to interpret ambiguous commands that ordinary, rigid programs are unable to decipher. For instance, computers can work with words like "tall" and "expensive" rather than 6'5" or $669.95. This book covers the use of fuzzy logic in the information science and information engineering fields.
Decision making is an omnipresent, most crucial activity of the human being, and also of virtually all artificial broadly perceived “intelligent” systems that try to mimic human behavior, reasoning and choice processes. It is quite obvious that such a relevance of decision making had triggered vast research effort on its very essence, and attempts to develop tools and techniques which would make it possible to somehow mimic human decision making related acts, even to automate decision making processes that had been so far reserved for the human beings. The roots of those attempts at a scientific analysis can be traced to the ancient times but – clearly – they have gained momentum in ...