Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Partial Differential Equations
  • Language: en
  • Pages: 778

Partial Differential Equations

This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail...Evans' book is evidence of his m...

Partial Differential Equations
  • Language: en
  • Pages: 533

Partial Differential Equations

Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, par...

Partial Differential Equations
  • Language: en
  • Pages: 268

Partial Differential Equations

This book provides a basic introductory course in partial differential equations, in which theory and applications are interrelated and developed side by side. Emphasis is on proofs, which are not only mathematically rigorous, but also constructive, where the structure and properties of the solution are investigated in detail. The authors feel that it is no longer necessary to follow the tradition of introducing the subject by deriving various partial differential equations of continuum mechanics and theoretical physics. Therefore, the subject has been introduced by mathematical analysis of the simplest, yet one of the most useful (from the point of view of applications), class of partial differential equations, namely the equations of first order, for which existence, uniqueness and stability of the solution of the relevant problem (Cauchy problem) is easy to discuss. Throughout the book, attempt has been made to introduce the important ideas from relatively simple cases, some times by referring to physical processes, and then extending them to more general systems.

Partial Differential Equations
  • Language: en
  • Pages: 467

Partial Differential Equations

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Ordinary and Partial Differential Equations
  • Language: en
  • Pages: 647

Ordinary and Partial Differential Equations

  • Type: Book
  • -
  • Published: 2013-01-29
  • -
  • Publisher: CRC Press

Covers ODEs and PDEs—in One Textbook Until now, a comprehensive textbook covering both ordinary differential equations (ODEs) and partial differential equations (PDEs) didn’t exist. Fulfilling this need, Ordinary and Partial Differential Equations provides a complete and accessible course on ODEs and PDEs using many examples and exercises as well as intuitive, easy-to-use software. Teaches the Key Topics in Differential Equations The text includes all the topics that form the core of a modern undergraduate or beginning graduate course in differential equations. It also discusses other optional but important topics such as integral equations, Fourier series, and special functions. Numerou...

Elliptic Partial Differential Equations of Second Order
  • Language: en
  • Pages: 544

Elliptic Partial Differential Equations of Second Order

This work aims to be of interest to those who have to work with differential equations and acts either as a reference or as a book to learn from. The authors have made the treatment self-contained.

Partial Differential Equations
  • Language: en
  • Pages: 292

Partial Differential Equations

  • Type: Book
  • -
  • Published: 1975-10-02
  • -
  • Publisher: CUP Archive

In this book, Professor Copson gives a rigorous account of the theory of partial differential equations of the first order and of linear partial differential equations of the second order, using the methods of classical analysis. In spite of the advent of computers and the applications of the methods of functional analysis to the theory of partial differential equations, the classical theory retains its relevance in several important respects. Many branches of classical analysing have their origins in the rigourous discussion of problems in applies mathematics and theoretical physics, and the classical treatment of the theory of partial differential equations still provides the best method of treating many physical problems. A knowledge of the classical theory is essential for pure mathematics who intend to undertake research in this field, whatever approach they ultimately adopt. The numerical analyst needs a knowledge of classical theory in order to decide whether a problem has a unique solution or not.

Partial Differential Equations
  • Language: en
  • Pages: 518

Partial Differential Equations

  • Type: Book
  • -
  • Published: 1987
  • -
  • Publisher: Unknown

This book is a rigorous introduction to the abstract theory of partial differential equations. The main prerequisite is familiarity with basic functional analysis: more advanced topics such as Fredholm operators, the Schauder fixed point theorem and Bochner integrals are introduced when needed, and the book begins by introducing the necessary material from the theory of distributions and Sobolev spaces. Using such techniques, the author presents different methods available for solving elliptic, parabolic and hyperbolic equations. He also considers the difference process for the practical solution of a partial differential equation, emphasising that it is possible to solve them numerically by simple methods. Many examples and exercises are provided throughout, and care is taken to explain difficult points. Advanced undergraduates and graduate students will appreciate this self-contained and practical introduction.

Partial Differential Equations
  • Language: en
  • Pages: 364

Partial Differential Equations

  • Type: Book
  • -
  • Published: 1988
  • -
  • Publisher: Unknown

This is the second edition of the well-established text in partial differential equations, emphasizing modern, practical solution techniques. This updated edition includes a new chapter on transform methods and a new section on integral equations in the numerical methods chapter. The authors have also included additional exercises.

Numerical Solution of Partial Differential Equations
  • Language: en
  • Pages: 356

Numerical Solution of Partial Differential Equations

Substantially revised, this authoritative study covers the standard finite difference methods of parabolic, hyperbolic, and elliptic equations, and includes the concomitant theoretical work on consistency, stability, and convergence. The new edition includes revised and greatly expanded sections on stability based on the Lax-Richtmeyer definition, the application of Pade approximants to systems of ordinary differential equations for parabolic and hyperbolic equations, and a considerably improved presentation of iterative methods. A fast-paced introduction to numerical methods, this will be a useful volume for students of mathematics and engineering, and for postgraduates and professionals who need a clear, concise grounding in this discipline.