You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
Ordinary Differential Equations covers the fundamentals of the theory of ordinary differential equations (ODEs), including an extensive discussion of the integration of differential inequalities, on which this theory relies heavily. In addition to these results, the text illustrates techniques involving simple topological arguments, fixed point theorems, and basic facts of functional analysis. Unlike many texts, which supply only the standard simplified theorems, this book presents the basic theory of ODEs in a general way. This SIAM reissue of the 1982 second edition covers invariant manifolds, perturbations, and dichotomies, making the text relevant to current studies of geometrical theory...
Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity, prerequisites have been kept to a minimum and the material is covered in such a way as to be appeal...
This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.
This book is a very well-accepted introduction to the subject. In it, the author identifies the significant aspects of the theory and explores them with a limited amount of machinery from mathematical analysis. Now, in this fourth edition, the book has again been updated with an additional chapter on Lewy’s example of a linear equation without solutions.
Primarily intended for the undergraduate students of mathematics, physics and engineering, this text gives in-depth coverage of differential equations and the methods for solving them. The book begins with the definitions, the physical and geometric origins of differential equations, and the methods for solving the first order differential equations. Then it goes on to give the applications of these equations to such areas as biology, medical sciences, electrical engineering and economics. The text also discusses, systematically and logically, higher order differential equations and their applications to telecommunications, civil engineering, cardiology and detection of diabetes, as also the...
Stochastic Differential Equations and Diffusion Processes
"This is a very good book ... with many well-chosen examples and illustrations." — American Mathematical Monthly This highly regarded text presents a self-contained introduction to some important aspects of modern qualitative theory for ordinary differential equations. It is accessible to any student of physical sciences, mathematics or engineering who has a good knowledge of calculus and of the elements of linear algebra. In addition, algebraic results are stated as needed; the less familiar ones are proved either in the text or in appendixes. The topics covered in the first three chapters are the standard theorems concerning linear systems, existence and uniqueness of solutions, and depe...
Partial differential equations are used in mathematical models of a huge range of real-world phenomena, from electromagnetism to financial markets. This new edition of Applied PDEs contains many new sections and exercises Including, American options, transform methods, free surface flows, linear elasticity and complex characteristics.