Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Subsampling
  • Language: en
  • Pages: 359

Subsampling

Since Efron's profound paper on the bootstrap, an enormous amount of effort has been spent on the development of bootstrap, jacknife, and other resampling methods. The primary goal of these computer-intensive methods has been to provide statistical tools that work in complex situations without imposing unrealistic or unverifiable assumptions about the data generating mechanism. This book sets out to lay some of the foundations for subsampling methodology and related methods.

Time Series
  • Language: en
  • Pages: 587

Time Series

  • Type: Book
  • -
  • Published: 2019-12-09
  • -
  • Publisher: CRC Press

Time Series: A First Course with Bootstrap Starter provides an introductory course on time series analysis that satisfies the triptych of (i) mathematical completeness, (ii) computational illustration and implementation, and (iii) conciseness and accessibility to upper-level undergraduate and M.S. students. Basic theoretical results are presented in a mathematically convincing way, and the methods of data analysis are developed through examples and exercises parsed in R. A student with a basic course in mathematical statistics will learn both how to analyze time series and how to interpret the results. The book provides the foundation of time series methods, including linear filters and a ge...

Topics in Nonparametric Statistics
  • Language: en
  • Pages: 369

Topics in Nonparametric Statistics

  • Type: Book
  • -
  • Published: 2014-12-02
  • -
  • Publisher: Springer

This volume is composed of peer-reviewed papers that have developed from the First Conference of the International Society for Non Parametric Statistics (ISNPS). This inaugural conference took place in Chalkidiki, Greece, June 15-19, 2012. It was organized with the co-sponsorship of the IMS, the ISI and other organizations. M.G. Akritas, S.N. Lahiri and D.N. Politis are the first executive committee members of ISNPS and the editors of this volume. ISNPS has a distinguished Advisory Committee that includes Professors R.Beran, P.Bickel, R. Carroll, D. Cook, P. Hall, R. Johnson, B. Lindsay, E. Parzen, P. Robinson, M. Rosenblatt, G. Roussas, T. SubbaRao and G. Wahba. The Charting Committee of IS...

Selected Works of Murray Rosenblatt
  • Language: en
  • Pages: 489

Selected Works of Murray Rosenblatt

During the second half of the 20th century, Murray Rosenblatt was one of the most celebrated and leading figures in probability and statistics. Among his many contributions, Rosenblatt conducted seminal work on density estimation, central limit theorems under strong mixing conditions, spectral domain methodology, long memory processes and Markov processes. He has published over 130 papers and 5 books, many as relevant today as when they first appeared decades ago. Murray Rosenblatt was one of the founding members of the Department of Mathematics at the University of California at San Diego (UCSD) and served as advisor to over twenty PhD students. He maintains a close association with UCSD in his role as Professor Emeritus. This volume is a celebration of Murray Rosenblatt's stellar research career that spans over six decades, and includes some of his most interesting and influential papers. Several leading experts provide commentary and reflections on various directions of Murray's research portfolio.

Model-Free Prediction and Regression
  • Language: en
  • Pages: 256

Model-Free Prediction and Regression

  • Type: Book
  • -
  • Published: 2015-11-13
  • -
  • Publisher: Springer

The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality. Prediction has been traditionally approached via a model-based paradigm, i...

Nonparametric Econometrics
  • Language: en
  • Pages: 768

Nonparametric Econometrics

A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods h...

Time Series Analysis: Methods and Applications
  • Language: en
  • Pages: 778

Time Series Analysis: Methods and Applications

  • Type: Book
  • -
  • Published: 2012-06-26
  • -
  • Publisher: Elsevier

'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.

Statistical Methods for Ranking Data
  • Language: en
  • Pages: 276

Statistical Methods for Ranking Data

  • Type: Book
  • -
  • Published: 2014-09-02
  • -
  • Publisher: Springer

This book introduces advanced undergraduate, graduate students and practitioners to statistical methods for ranking data. An important aspect of nonparametric statistics is oriented towards the use of ranking data. Rank correlation is defined through the notion of distance functions and the notion of compatibility is introduced to deal with incomplete data. Ranking data are also modeled using a variety of modern tools such as CART, MCMC, EM algorithm and factor analysis. This book deals with statistical methods used for analyzing such data and provides a novel and unifying approach for hypotheses testing. The techniques described in the book are illustrated with examples and the statistical software is provided on the authors’ website.

The Weighted Bootstrap
  • Language: en
  • Pages: 236

The Weighted Bootstrap

INTRODUCTION 1) Introduction In 1979, Efron introduced the bootstrap method as a kind of universal tool to obtain approximation of the distribution of statistics. The now well known underlying idea is the following : consider a sample X of Xl ' n independent and identically distributed H.i.d.) random variables (r. v,'s) with unknown probability measure (p.m.) P . Assume we are interested in approximating the distribution of a statistical functional T(P ) the -1 nn empirical counterpart of the functional T(P) , where P n := n l:i=l aX. is 1 the empirical p.m. Since in some sense P is close to P when n is large, n • • LLd. from P and builds the empirical p.m. if one samples Xl ' ... , Xm n n -1 mn • • P T(P ) conditionally on := mn l: i =1 a • ' then the behaviour of P m n,m n n n X. 1 T(P ) should imitate that of when n and mn get large. n This idea has lead to considerable investigations to see when it is correct, and when it is not. When it is not, one looks if there is any way to adapt it.

Exploring the Limits of Bootstrap
  • Language: en
  • Pages: 462

Exploring the Limits of Bootstrap

Explores the application of bootstrap to problems that place unusual demands on the method. The bootstrap method, introduced by Bradley Efron in 1973, is a nonparametric technique for inferring the distribution of a statistic derived from a sample. Most of the papers were presented at a special meeting sponsored by the Institute of Mathematical Statistics and the Interface Foundation in May, 1990.