You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Neuroimmunology could be defined as the application of immunological methods to problems in neurobiology but such a definition is so all encompassing as to be unhelpful. It is not a precisely circumscribed discipline but it seems worthwhile at the outset to point to three of the major areas of activity. One rather early use of the term was in connection with studies on the immune response to antigens in the nervous system. This includes topics such as autoimmunity in the central and peripheral nervous sys tems, the response to neural tumors or viral infections, and the im munopathology of such processes. Although not at the forefront of the currently fashionable preoccupation with neuroimmun...
Advances in Pharmacology and Therapeutics, Volume l: Receptors contains the proceedings of the 7th International Congress of Pharmacology held in Paris, France, in 1978. The papers explore advances in the understanding of receptors, their pharmacology, and their therapeutic applications. Topics covered range from opiate receptors and their endogenous ligands to membrane receptors in eukaryotic cells. Applications of binding to pharmacological research are also discussed. This volume is comprised of 29 chapters and opens with an overview of the chemistry and biochemistry of pituitary endorphins, paying particular attention to the correlation between the analgesic potency, receptor binding pro...
Volume 5 of Biomembranes covers an important group of membrane proteins, the ATPases. The P-type ATPases couple the hydrolysis of ATP to the movement of ions across a membrane and are characterized by the formation of a phosphoyrlated intermediate. Included are the plasma membrane and muscle sarcoplasmic reticulum Ca2+ -ATPases, the (Na+ -K+) -ATPase, the gastric (H+ -K+) -ATPase, the plasma membrane H+ -ATPase of fungi and plants, the Mg2+ - transport ATPase, the Salmonella typhimurium, and the K+ -ATPase of Escherichia coli, KdpB. The other important classes of ATPase in eukaryotic systems are the vacuolar H+ -ATPases and the F0F1 ATP synthase, and, in bacteria, the anion-translocating ATPases, responsible for resistance to arsenicals and antimonials, and the (Na+ -Mg2+) -ATPase of Acholeplasma. Finally, eukaryotic systems contain a variety of ectonucleotidases important, for example, in hydrolysis of extracellular ATP released as a cotransmitter from cholinergic and adrenergic nerve terminals. Volume 5 of Biomembranes explores structure-function relationships for these mebrane-bound ATPases.
The sodium of animal cell membranes converts the chemical energy obtained from the hydrolysis of adenosine 5' -triphosphate into a movement of the cations Na + and K + against an electrochemical gradient. The gradient is used subse quently as an energy source to drive the uptake of metabolic substrates in polar epithelial cells and to use it for purposes of communications in excitable cells. The biological importance of the sodium pump is evident from the fact that be tween 20-70% of the cell's metabolic energy is consumed for the pumping pro cess. Moreover, the sodium pump is an important biological system involved in regulatory processes like the maintenance of the cells' and organism's wa...
None
It is instructive to compare the response of biologists to the two themes that comprise the title of this volume. The concept of the cell cycle-in contra distinction to cell division-is a relatively recent one. Nevertheless biologists of all persuasions appreciate and readily agree on the central problems in this area. Issues ranging from mechanisms that initiate and integrate the synthesis of chro mosomal proteins and DNA during S-phase of mitosis to the manner in which assembly of microtubules and their interactions lead to the segregation of metaphase chromosomes are readily followed by botanists and zoologists, as well as by cell and molecular biologists. These problems are crisp and wel...
Over the past few decades numerous scientists have called for a unification of the fields of embryo development, genetics, and evolution. Each field has glaring holes in its ability to explain the fundamental phenomena of life. In this book, the author shows how the phenomenon of cell differentiation, considered in its temporal and spatial aspects during embryogenesis, provides a starting point for a unified theory of multicellular organisms (plants, fungi and animals), including their evolution and genetics. This unification is based on the recent discovery of differentiation waves by the author and his colleagues, described in the appendices, and illustrated by a flip movie prepared by a medical artist. To help the reader through the many fields covered, a glossary is included.This book will be of great value to the researcher and practicing doctors/scientists alike. The research students will receive an in-depth tutorial on the topics covered. The seasoned researcher will appreciate the applications and the gold mine of other possibilities for novel research topics.