You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The publication of Volume V of Physical Properties of High Temperature Superconductors is expected in March, 1996. It will have chapters of interest for both fundamental studies and applied research. The topics discussed are expected to include the electromagnetic response (penetration depth and surface resistance), local lattice distortions, the influence of vortex fluctuations on macroscopic behavior, the properties of superlattices, and the symmetry of the superconducting order parameter.
None
This volume contains the papers presented at the First Mexico-U.S.A. Symposium on Materials Sciences and Engineering held in Ixtapa, Guerrero, Mexico, during Septem ber 24-27, 1991. The conference was conceived with the primary objective of increas ing the close ties between scientists and engineers in both Mexico and the U.S. with an interest in materials. The conference itself would have not taken place without the drive, determination and technical knowledge of John K. Tien of the University of Texas at Austin and of Francisco Mejia Lira of the Universidad de San Luis Potosi. This book is dedicated to their memory. The event brought together materials scientists and engineers with interes...
Since the discovery of superconductivity with trans1tton temperatures above 77 K, concentrated research activities toward the exploration of practical applica tions of these materials have been carried out. Currently, a remarkable improve ment in superconducting properties has been achieved due to the fine optimization of fabrication processes, and this has attracted industrial interest for future applications. In the case of NdBa Cu 0 materials, a new pinning mecha 2 3 7 nism was found which enhances the critical current under applied magnetic fields. In single crystals of these materials, oxygen control results in an increase in the growth rate. The metalorganic chemical vapor deposition (...
Since the publication of Physical Properties of High Temperature Superconductors I, research in the field of high temperature superconductivity has continued at a rapid pace. Volume II will contain chapters on some of the major areas of activity which were not covered extensively in Volume I: structure, microstructure, thermodynamics, oxygen stoichiometry effects, nuclear magnetic and quadrupole resonance, Hall effect, electronic structure, and the pairing state. Like Volume I, it will present authoritative and comprehensive reviews written by recognized experts in the field. This book should be useful to all students, scientists, and engineers who desire to know more about high temperature superconductivity.
These proceedings contain some selected topics in high Tc superconductivity. The experimental data presently available on high Tc superconductivity together with some of the existing theories (BCS, bipolarons, anyons, superconductivity by quantum size effect, local pairing) are reviewed.
Advances through carefully conducted quantitative work on well designed, high quality materials characterize the present state of high-temperature superconductivity research. The contributions to this volume present a theoretical and experimental overview of electronic structure and physical properties, including anisotropic features, of high-temperative materials, with a focus on cuprates. In order to enhance the understanding of the mechanisms of superconductivity at high temperatures, this volume is divided into theoretical and experimental parts. The contributions to the two parts correspond to each other, giving readers involved in either area of research activity a reference to findingsof the other. On the other hand, this book gives young physicists high-level information on the present state of research, enhanced by tutorial contributions of leading physicists in the field.
Provides information on all chemical, physical and material aspects of this class of cuprates, and covers their applications. This work provides data on the chemistry, solid-state chemistry, handling and safety requirements of thallium.