You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a first integrated view of nanophotonics and plasmonics, covering the use of dielectric, semiconductor, and metal nanostructures to manipulate light at the nanometer scale. The presentation highlights similarities and advantages, and shows the common underlying physics, targets, and methodologies used for different materials (optically transparent materials for nanophotonics, vs opaque materials for plasmonics). Ultimately, the goal is to provide a basis for developing a unified platform for both fields. In addition to the fundamentals and detailed theoretical background, the book showcases the main device applications. Ching Eng (Jason) Png is Director of the Electronics and Photonics Department at the Institute of High Performance Computing, Agency for Science Technology and Research, Singapore. Yuriy A. Akimov is a scientist in the Electronics and Photonics Department at the Institute of High Performance Computing, Agency for Science Technology and Research, Singapore.
This handbook addresses the development of energy-efficient, environmentally friendly solid-state light sources, in particular semiconductor light emitting diodes (LEDs) and other solid-state lighting devices. It reflects the vast growth of this field and impacts in diverse industries, from lighting to communications, biotechnology, imaging, and medicine. The chapters include coverage of nanoscale processing, fabrication of LEDs, light diodes, photodetectors and nanodevices, characterization techniques, application, and recent advances. Readers will obtain an understanding of the key properties of solid-state lighting and LED devices, an overview of current technologies, and appreciation for the challenges remaining. The handbook will be useful to material growers and evaluators, device design and processing engineers, newcomers, students, and professionals in the field.
This book provides a first integrated view of nanophotonics and plasmonics, covering the use of dielectric, semiconductor, and metal nanostructures to manipulate light at the nanometer scale. The presentation highlights similarities and advantages, and shows the common underlying physics, targets, and methodologies used for different materials (optically transparent materials for nanophotonics, vs opaque materials for plasmonics). Ultimately, the goal is to provide a basis for developing a unified platform for both fields. In addition to the fundamentals and detailed theoretical background, the book showcases the main device applications. Ching Eng (Jason) Png is Director of the Electronics and Photonics Department at the Institute of High Performance Computing, Agency for Science Technology and Research, Singapore. Yuriy A. Akimov is a scientist in the Electronics and Photonics Department at the Institute of High Performance Computing, Agency for Science Technology and Research, Singapore.
This much-needed text brings the treatment of optical pattern recognition up-to-date in one comprehensive resource. Optical pattern recognition, one of the first implementations of Fourier Optics, is now widely used, and this text provides an accessible introduction for readers who wish to get to grips with how holography is applied in a practical context. A wide range of devices are addressed from a user perspective and are accompanied with detailed tables enabling performance comparison, in addition to chapters exploring computer-generated holograms, optical correlator systems, and pattern matching algorithms. This book will appeal to both lecturers and research scientists in the field of electro-optic devices and systems. Features: Covers a range of new developments, including computer-generated holography and 3D image recognition Accessible without a range of prior knowledge, providing a clear exposition of technically difficult concepts Contains extensive examples throughout to reinforce learning
Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume I covers the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials with brand new chapters on silicon photonics, nanophotonics, and graphene optoelectronics. Volume II addresses the underlying system te...
None
This book covers device design fundamentals and system applications in optical MEMS and nanophotonics. Expert authors showcase examples of how fusion of nanoelectromechanical (NEMS) with nanophotonic elements is creating powerful new photonic devices and systems including MEMS micromirrors, MEMS tunable filters, MEMS-based adjustable lenses and apertures, NEMS-driven variable silicon nanowire waveguide couplers, and NEMS tunable photonic crystal nanocavities. The book also addresses system applications in laser scanning displays, endoscopic systems, space telescopes, optical telecommunication systems, and biomedical implantable systems. Presents efforts to scale down mechanical and photonic ...
Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. Gives a broad overview of concepts with concise explanations illustrated by real results. Compares different levels of modeling, from simple analytical models to complex numerical models. Discusses practical methods of model validation. Includes an overview of numerical techniques.
Praise for prior editions "an excellent treatise of thin film coatings, explaining how to produce all sorts of different filters selected according to the function they are required to play... an indispensable text for every filter manufacturer and user and an excellent guide for students." ―Contemporary Physics "essential reading for all those involved in the design, manufacture, and application of optical coatings" ―Materials World "a must-have addition to the library of any optical thin-film theorist or practitioner" ―SVC News This book is quite simply the Bible for the field of optical thin films. It gives the most complete introduction to thin film optical coatings addressed to ma...
This book addresses material growth, device fabrication, device application, and commercialization of energy-efficient white light-emitting diodes (LEDs), laser diodes, and power electronics devices. It begins with an overview on basics of semiconductor materials, physics, growth and characterization techniques, followed by detailed discussion of advantages, drawbacks, design issues, processing, applications, and key challenges for state of the art GaN-based devices. It includes state of the art material synthesis techniques with an overview on growth technologies for emerging bulk or free standing GaN and AlN substrates and their applications in electronics, detection, sensing, optoelectron...