You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Dynamic soft materials that have the ability to expand and contract, change stiffness, self-heal or dissolve in response to environmental changes, are of great interest in applications ranging from biosensing and drug delivery to soft robotics and tissue engineering. This book covers the state-of-the-art and current trends in the very active and exciting field of bioinspired soft matter, its fundamentals and comprehension from the structural-property point of view, as well as materials and cutting-edge technologies that enable their design, fabrication, advanced characterization and underpin their biomedical applications. The book contents are supported by illustrated examples, schemes, and figures, offering a comprehensive and thorough overview of key aspects of soft matter. The book will provide a trusted resource for undergraduate and graduate students and will extensively benefit researchers and professionals working across the fields of chemistry, biochemistry, polymer chemistry, materials science and engineering, nanosciences, nanotechnologies, nanomedicine, biomedical engineering and medical sciences.
Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field. Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language ...
Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field. Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language ...
A weekly record of scientific progress.
Directory of foreign diplomatic officers in Washington.
This volume of proceedings includes new and original scientific results along with recent developments in instrumentation and methods, in invited and contributed papers. Researchers and graduate students interested in hyperfine interaction detected by nuclear radiation as well as nuclear quadrupole interactions detected by resonance methods in the areas of materials, biological and medical science will find this volume indispensable.
Directory of foreign diplomatic officers in Washington.