You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the fourth and final volume of papers from a series of workshops called "Computational Learning Theory and Ǹatural' Learning Systems." The purpose of the workshops was to explore the emerging intersection of theoretical learning research and natural learning systems. The workshops drew researchers from three historically distinct styles of learning research: computational learning theory, neural networks, and machine learning (a subfield of AI). Volume I of the series introduces the general focus of the workshops. Volume II looks at specific areas of interaction between theory and experiment. Volumes III and IV focus on key areas of learning systems that have developed recently. Vol...
The two volume set LNCS 3696 and LNCS 3697 constitutes the refereed proceedings of the 15th International Conference on Artificial Neural Networks, ICANN 2005, held in Warsaw, Poland in September 2005. The over 600 papers submitted to ICANN 2005 were thoroughly reviewed and carefully selected for presentation. The first volume includes 106 contributions related to Biological Inspirations; topics addressed are modeling the brain and cognitive functions, development of cognitive powers in embodied systems spiking neural networks, associative memory models, models of biological functions, projects in the area of neuroIT, evolutionary and other biological inspirations, self-organizing maps and t...
This volume is the first part of the two-volume proceedings of the International C- ference on Artificial Neural Networks (ICANN 2005), held on September 11–15, 2005 in Warsaw, Poland, with several accompanying workshops held on September 15, 2005 at the Nicolaus Copernicus University, Toru , Poland. The ICANN conference is an annual meeting organized by the European Neural Network Society in cooperation with the International Neural Network Society, the Japanese Neural Network Society, and the IEEE Computational Intelligence Society. It is the premier European event covering all topics concerned with neural networks and related areas. The ICANN series of conferences was initiated in 1991 ...
Connectionist Models of Learning, Development and Evolution comprises a selection of papers presented at the Sixth Neural Computation and Psychology Workshop - the only international workshop devoted to connectionist models of psychological phenomena. With a main theme of neural network modelling in the areas of evolution, learning, and development, the papers are organized into six sections: The neural basis of cognition Development and category learning Implicit learning Social cognition Evolution Semantics Covering artificial intelligence, mathematics, psychology, neurobiology, and philosophy, it will be an invaluable reference work for researchers and students working on connectionist modelling in computer science and psychology, or in any area related to cognitive science.
This volume looks at financial prediction from a broad range of perspectives. It covers: - the economic arguments - the practicalities of the markets - how predictions are used - how predictions are made - how predictions are turned into something usable (asset locations) It combines a discussion of standard theory with state-of-the-art material on a wide range of information processing techniques as applied to cutting-edge financial problems. All the techniques are demonstrated with real examples using actual market data, and show that it is possible to extract information from very noisy, sparse data sets. Aimed primarily at researchers in financial prediction, time series analysis and information processing, this book will also be of interest to quantitative fund managers and other professionals involved in financial prediction.
The ?eld of multi-sensor fusion and integration is growing into signi?cance as our societyisintransitionintoubiquitouscomputingenvironmentswithroboticservices everywhere under ambient intelligence. What surround us are to be the networks of sensors and actuators that monitor our environment, health, security and safety, as well as the service robots, intelligent vehicles, and autonomous systems of ever heightened autonomy and dependability with integrated heterogeneous sensors and actuators. The ?eld of multi-sensor fusion and integration plays key role for m- ing the above transition possible by providing fundamental theories and tools for implementation. This volume is an edition of the pa...
Following the intense research activIties of the last decade, artificial neural networks have emerged as one of the most promising new technologies for improving the quality of healthcare. Many successful applications of neural networks to biomedical problems have been reported which demonstrate, convincingly, the distinct benefits of neural networks, although many ofthese have only undergone a limited clinical evaluation. Healthcare providers and developers alike have discovered that medicine and healthcare are fertile areas for neural networks: the problems here require expertise and often involve non-trivial pattern recognition tasks - there are genuine difficulties with conventional methods, and data can be plentiful. The intense research activities in medical neural networks, and allied areas of artificial intelligence, have led to a substantial body of knowledge and the introduction of some neural systems into clinical practice. An aim of this book is to provide a coherent framework for some of the most experienced users and developers of medical neural networks in the world to share their knowledge and expertise with readers.
This book contains the proceedings of the conference ANNIMAB-l, held 13-16 May 2000 in Goteborg, Sweden. The conference was organized by the Society for Artificial Neural Networks in Medicine and Biology (ANNIMAB-S), which was established to promote research within a new and genuinely cross-disciplinary field. Forty-two contributions were accepted for presentation; in addition to these, S invited papers are also included. Research within medicine and biology has often been characterised by application of statistical methods for evaluating domain specific data. The growing interest in Artificial Neural Networks has not only introduced new methods for data analysis, but also opened up for deve...
Cortical evoked potentials are of interest primarily as tests of changing neuronal excitabilities accompanying normal brain function. The first three steps in the anal ysis of these complex waveforms are proper placement of electrodes for recording, the proper choice of electrical or sensory stimulus parameters, and the establish ment of behavioral control. The fourth is development of techniques for reliable measurement. Measurement consists of comparison of an unknown entity with a set of standard scales or dimensions having numerical attributes in preassigned degree. A physical object can be described by the dimensions of size, mass, density, etc. In addition there are dimensions such as ...
Many methods and models have been proposed for solving difficult problems such as prediction, planning and knowledge discovery in application areas such as bioinformatics, speech and image analysis. Most, however, are designed to deal with static processes which will not change over time. Some processes - such as speech, biological information and brain signals - are not static, however, and in these cases different models need to be used which can trace, and adapt to, the changes in the processes in an incremental, on-line mode, and often in real time. This book presents generic computational models and techniques that can be used for the development of evolving, adaptive modelling systems....