You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such as the Differential Adsorption Bed (DAB), the time lag, the diffusion cell, chromatography, and the batch adsorber methods are also covered by the book. It can be used by lecturers and engineers who wish to carry out research in adsorption. A number of programming codes written in MatLab language are included so that readers can use them directly to better understand the behavior of single and multicomponent adsorption systems.
Understand the fundamentals of applied mathematics with this up-to-date introduction Applied mathematics is the use of mathematical concepts and methods in various applied or practical areas, including engineering, computer science, and more. As engineering science expands, the ability to work from mathematical principles to solve and understand equations has become an ever more critical component of engineering fields. New engineering processes and materials place ever-increasing mathematical demands on new generations of engineers, who are looking more and more to applied mathematics for an expanded toolkit. Applied Mathematics and Modeling for Chemical Engineers provides this toolkit in a...
This Second Edition of the go-to reference combines the classical analysis and modern applications of applied mathematics for chemical engineers. The book introduces traditional techniques for solving ordinary differential equations (ODEs), adding new material on approximate solution methods such as perturbation techniques and elementary numerical solutions. It also includes analytical methods to deal with important classes of finite-difference equations. The last half discusses numerical solution techniques and partial differential equations (PDEs). The reader will then be equipped to apply mathematics in the formulation of problems in chemical engineering. Like the first edition, there are many examples provided as homework and worked examples.
Adsorption by Carbons covers the most significant aspects of adsorption by carbons, attempting to fill the existing gap between the fields of adsorption and carbonaceous materials. Both basic and applied aspects are presented. The first section of the book introduces physical adsorption and carbonaceous materials, and is followed by a section concerning the fundamentals of adsorption by carbons. This leads to development of a series of theoretical concepts that serve as an introduction to the following section in which adsorption is mainly envisaged as a tool to characterize the porous texture and surface chemistry of carbons. Particular attention is paid to some novel nanocarbons, and the e...
This book presents the latest research on adsorption science and technology. It serves as an excellent reference for research in areas such as fundamentals of adsorption and ion exchange (equilibria and kinetics), new materials, adsorption characterization, novel processes, energy and environmental processes. Readership: Engineers and researchers in adsorption and separation science; research students in chemical engineering and physical chemistry.
Fundamentals of Adsorption is the proceedings of the fifth International Conference on the Fundamentals of Adsorption, which was held on May 13-18, 1995 at the Asilomar Conference Center, Pacific Grove, California. This conference was organized completely under the auspices of the International Adsorption Society. It was attended by 196 participants from 24 countries. Members of the Scientific Advisory Board, together with the Conference Committee, selected papers for presentation from a large number of proposals involving an especially high level of international participation. The fundamental aspects of adsorption is a subject which has grown rapidly in recent years, drawing researchers from many disciplines including materials science, chemistry, physics, biochemistry and biotechnology, and chemical, civil, mechanical and environmental engineering. Fundamentals of Adsorption serves as an excellent reference and may be used as a primary text for a graduate level course on adsorption research or as a secondary text for a course on any of the disciplines mentioned above.
Zeolites are hydrated aluminosilicate minerals of the family of microporous solids. According to the US Geological Survey, there are about 40 naturally occurring zeolites, forming in sedimentary and volcanic rocks. The most commonly mined forms include clinoptilolite, chabazite and mordenite. There are over 200 synthetic zeolites. For their abundance, natural and synthetic zeolites are widely used in the industry, agriculture, water treatment, wastewater treatment and as dietary supplements to treat diarrhea, autism, cancer and other. This book Zeolites and Their Applications deals with several aspects of zeolite morphology, synthesis and applications. The book is divided into three sections and structured into nine chapters. The first section includes the introductory chapter, the second section explains mineralogy, morphology and synthesis of zeolites and the third section focuses on the different applications of both natural and synthetic zeolites. So, in this book, the readers will obtain updated information on mineralogy, morphology, synthesis and application of zeolites. Scientists from different scientific fields reported in this book their findings.
The batch distillation process has existed for many centuries. It is perhaps the oldest technology for separating or purifying liquid mixtures and is the most frequently used separation method in batch processes. In the last 25 years, with continuous development of faster computers and sophisticated numerical methods, there have been many published works using detailed mathematical models with rigorous physical property calculations and advanced optimisation techniques to address several important issues, such as selection of column configurations, design, operation, off-cut recycling, use of batch distillation in reactive and extractive modes, etc.Batch Distillation: Design and Operation presents excellent, important contributions of many researchers from around the globe, including those of the author and his co-workers./a