You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This handbook provides the most comprehensive, up-to-date and easy-to-apply information on the physics, mechanics, reliability and packaging of micro- and opto-electronic materials. It details their assemblies, structures and systems, and each chapter contains a summary of the state-of-the-art in a particular field. The book provides practical recommendations on how to apply current knowledge and technology to design and manufacture. It further describes how to operate a viable, reliable and cost-effective electronic component or photonic device, and how to make such a device into a successful commercial product.
Connecting inorganic chemistry to the hottest topic in materials science, this timely resource collects the contributions made by leading inorganic chemists towards nanomaterials research. The second volume in the “Wiley Encyclopedia of Inorganic Chemistry Methods and Applications Series,” this signature title concentrates on recent developments in the field and includes all key topics such as nanowires, nanotubes, biomineralization, supramolecular materials and much more. This volume is also available as part of Encyclopedia of Inorganic Chemistry, 5 Volume Set. This set combines all volumes published as EIC Books from 2007 to 2010, representing areas of key developments in the field of inorganic chemistry published in the Encyclopedia of Inorganic Chemistry. Find out more.
The fourth edition of Krishan Chawla's widely used textbook, Composite Materials, offers integrated and completely up-to-date coverage of composite materials. The book focuses on the triad of processing, structure, and properties, while providing a well-balanced treatment of the materials science and mechanics of composites. In this edition of Composite Materials, revised and updated throughout, increasing use of composites in industry (especially aerospace and energy) and new developments in the field are highlighted. New material on the advances in non-conventional composites (which covers polymer, metal and ceramic matrix nanocomposites), self-healing composites, self-reinforced composites, biocomposites and laminates made of metals and polymer matrix composites is included. Examples of practical applications in various fields are provided throughout the book, with extensive references to the literature. The book is intended for use in graduate and upper-division undergraduate courses and as a reference for the practicing engineers and researchers in industry and academia.
None
Nanotechnology is no longer a merely social talking point and is beginning to affect the lives of everyone. Carbon nanotechnology as a major shaper of new nanotechnologies has evolved into a truly interdisciplinary field, which encompasses chemistry, physics, biology, medicine, materials science and engineering. This is a field in which a huge amount of literature has been generated within recent years, and the number of publications is still increasing every year. Carbon Nanotechnology aims to provide a timely coverage of the recent development in the field with updated reviews and remarks by world-renowned experts. Intended to be an exposition of cutting-edge research and development rathe...
Globally, fire retardants are needed to satisfy a multibillion dollar market and fire retardancy of polymetric materials is an important component of fire safety. This book covers the latest developments in new fire retardancy systems for engineers needing to use fire safe materials in their projects.
With this handbook, the distinguished team of editors has combined the expertise of leading nanomaterials scientists to provide the latest overview of this field. They cover the whole spectrum of nanomaterials, ranging from theory, synthesis, properties, characterization to application, including such new developments as quantum dots, nanoparticles, nanoporous materials, nanowires, nanotubes, and nanostructured polymers. The result is recommended reading for everybody working in nanoscience: Newcomers to the field can acquaint themselves with this exciting subject, while specialists will find answers to all their questions as well as helpful suggestions for further research.
This book presents the many different techniques and methods of fabricating materials on the nanometer scale, and, specifically, the utilization of these resources with regard to sensors. The techniques described are studied from an application-oriented perspective, providing the reader with a perspective of the types of nanostructured sensors available that is broader than other books which concentrate on theoretical situations related to specific fabrication techniques.
A novel way of arranging the atomic structure of a substance so that it can be made thousands of times stronger than in its native state. Often used to make duranium a further ten thousand times stronger. Thus, a lump of duranium can be made over ten million times stronger than the equivalent block of titanium. A one dimensional fullerene (a convex cage of atoms with only hexagonal and/ or pentagonal faces) with a cylindrical shape. Carbon nanotubes discovered in 1991 by Sumio Iijima resemble rolled up graphite, although they can not really be made that way. Depending on the direction that the tubes appear to have been rolled (quantified by the 'chiral vector'), they are known to act as conductors or semiconductors. Nanotubes are a proving to be useful as molecular components for nanotechnology. This book assembles and presents new and important research in the field.
Metal Matrix Composites: Processing and Interfaces provides a unified source of information on metal matrix composites (MMCs). This book contains three parts. Part 1 provides the introductory overview, focusing on the historical perspective on the state of the composites field. The synthesis and processing details on some standard and novel techniques used to fabricate composites are discussed in Part 2. Part 3 is devoted to reviewing techniques in probing, modeling, and modifying composite interfaces. Other topics include the diffusion brazing techniques, chemical vapor deposition, and in situ reinforcement of MMCs. The deformation processing of metal mixtures and optimizing properties of deformation-processed metal/metal composites are also covered in this text. This publication is useful to engineering students studying the processing and interfaces of MMCs.