You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book, along with its companion volume, Nonlinear Dynamics New Directions: Theoretical Aspects, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: · Develops applications of nonlinear dynamics on a diversity of topics such as patterns of synchrony in neuronal networks, laser synchronization, control of chaotic systems, and the study of transient dynamics in biological · Includes a study of self-organized regularity in long-range systems · Explains use of Levenstein's distance for measuring lexical evolution rates
The interdisciplinary journal publishes original and new results on recent developments, discoveries and progresses on Discontinuity, Nonlinearity and Complexity in physical and social sciences. The aim of the journal is to stimulate more research interest for exploration of discontinuity, complexity, nonlinearity and chaos in complex systems. The manuscripts in dynamical systems with nonlinearity and chaos are solicited, which includes mathematical theories and methods, physical principles and laws, and computational techniques. The journal provides a place to researchers for the rapid exchange of ideas and techniques in discontinuity, complexity, nonlinearity and chaos in physical and soci...
This volume offers an excellent selection of cutting-edge articles about fractal geometry, covering the great breadth of mathematics and related areas touched by this subject. Included are rich survey articles and fine expository papers. The high-quality contributions to the volume by well-known researchers--including two articles by Mandelbrot--provide a solid cross-section of recent research representing the richness and variety of contemporary advances in and around fractal geometry. In demonstrating the vitality and diversity of the field, this book will motivate further investigation into the many open problems and inspire future research directions. It is suitable for graduate students and researchers interested in fractal geometry and its applications. This is a two-part volume. Part 1 covers analysis, number theory, and dynamical systems; Part 2, multifractals, probability and statistical mechanics, and applications.
This book focuses on the interactions between discrete and geometric dynamical systems, and between dynamical systems and theoretical physics and computer science. Accordingly, the contributions revolve around two main topics: (1) interaction between geometric and symbolic systems, with emphasis on tiling problems for quasicrystals, substitutions and their multidimensional generalizations, geodesic and horocycle flow, adic systems; (2) dynamical systems: geometry and chaos, with special interest in smooth ergodic theory, statistical and multifractal properties of chaotic systems, stability and turbulence in extended complex systems.
This book focuses on the interactions between discrete and geometric dynamical systems, and between dynamical systems and theoretical physics and computer science. Accordingly, the contributions revolve around two main topics: (1) interaction between geometric and symbolic systems, with emphasis on tiling problems for quasicrystals, substitutions and their multidimensional generalizations, geodesic and horocycle flow, adic systems; (2) dynamical systems: geometry and chaos, with special interest in smooth ergodic theory, statistical and multifractal properties of chaotic systems, stability and turbulence in extended complex systems.
A series of research papers on various aspects of coding theory, cryptography, and other areas, including new and unpublished results on the subjects. The book will be useful to students, researchers, professionals, and tutors interested in this area of research.
This book demonstrates how mathematical methods and techniques can be used in synergy and create a new way of looking at complex systems. It becomes clear nowadays that the standard (graph-based) network approach, in which observable events and transportation hubs are represented by nodes and relations between them are represented by edges, fails to describe the important properties of complex systems, capture the dependence between their scales, and anticipate their future developments. Therefore, authors in this book discuss the new generalized theories capable to describe a complex nexus of dependences in multi-level complex systems and to effectively engineer their important functions. T...
This volume is based on talks given at the Conference in Honor of the 60th Anniversary of Alberto Verjovsky, a prominent mathematician in Latin America who made significant contributions to dynamical systems, geometry, and topology. Articles in the book present recent work in these areas and are suitable for graduate students and research mathematicians.
This book is devoted to an important branch of the dynamical systems theory : the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights and examples, as well as providing complete details of proofs. The only prerequisites are a basic knowledge of analysis and topology. Thus this book can serve as a graduate text or self-study guide for courses in applied mathematics or nonlinear dynamics (in the natural sciences). Moreover, the book can be used by specialists in applied nonlinear dynamics following the way in the book. The authors ...
This collection of research and survey papers sets out the theory of hidden Markov processes, in particular addressing a central problem of the subject: computation of the Shannon entropy rate of an HMP. Connections are drawn between approaches from various disciplines, whilst recent research results and open problems are described.